Scipy的高斯核密度估计和循环数据

11

我正在使用scipy的gaussian_kde来获取一些双峰数据的概率密度。但是,由于我的数据是角度(以度数表示的方向),当值接近极限时,我遇到了问题。下面的代码给出了两个示例kde,在定义域为0-360时会低估,因为它无法处理数据的循环性质。pdf需要在单位圆上定义,但我找不到任何适用于这种类型数据的scipy.stats函数(von mises分布存在,但仅适用于单峰数据)。有人遇到过这个问题吗?是否有任何(最好基于python)可用于估计单位圆上的双峰pdf?

import numpy as np
import scipy as sp
from pylab import plot,figure,subplot,show,hist
from scipy import stats



baz = np.array([-92.29061004, -85.42607874, -85.42607874, -70.01689348,
               -63.43494882, -63.43494882, -70.01689348, -70.01689348,
               -59.93141718, -63.43494882, -59.93141718, -63.43494882,
               -63.43494882, -63.43494882, -57.52880771, -53.61564818,
               -57.52880771, -63.43494882, -63.43494882, -92.29061004,
               -16.92751306, -99.09027692, -99.09027692, -16.92751306,
               -99.09027692, -16.92751306,  -9.86580694,  -8.74616226,
                -9.86580694,  -8.74616226,  -8.74616226,  -2.20259816,
                -2.20259816,  -2.20259816,  -9.86580694,  -2.20259816,
                -2.48955292,  -2.48955292,  -2.48955292,  -2.48955292,
                 4.96974073,   4.96974073,   4.96974073,   4.96974073,
                -2.48955292,  -2.48955292,  -2.48955292,  -2.48955292,
                -2.48955292,  -9.86580694,  -9.86580694,  -9.86580694,
               -16.92751306, -19.29004622, -19.29004622, -26.56505118,
               -19.29004622, -19.29004622, -19.29004622, -19.29004622])


xx = np.linspace(-180, 180, 181)
scipy_kde = stats.gaussian_kde(baz)              
print scipy_kde.integrate_box_1d(-180,180)

figure()
plot(xx, scipy_kde(xx), c='green')             

baz[baz<0] += 360             
xx = np.linspace(0, 360, 181)
scipy_kde = stats.gaussian_kde(baz)              
print scipy_kde.integrate_box_1d(-180,180)
plot(xx, scipy_kde(xx), c='red')             
4个回答

14

Dave的回答不正确,因为 scipyvonmises 函数没有在 [-pi, pi] 上循环。

相反,您可以使用以下代码,该代码基于相同的原则。它基于 numpy 中描述的方程式。

def vonmises_kde(data, kappa, n_bins=100):
    from scipy.special import i0
    bins = np.linspace(-np.pi, np.pi, n_bins)
    x = np.linspace(-np.pi, np.pi, n_bins)
    # integrate vonmises kernels
    kde = np.exp(kappa*np.cos(x[:, None]-data[None, :])).sum(1)/(2*np.pi*i0(kappa))
    kde /= np.trapz(kde, x=bins)
    return bins, kde

这里是一个例子

import matplotlib.pyplot as plt
import numpy as np
from numpy.random import vonmises

# generate complex circular distribution
data = np.r_[vonmises(-1, 5, 1000), vonmises(2, 10, 500), vonmises(3, 20, 100)]

# plot data histogram
fig, axes = plt.subplots(2, 1)
axes[0].hist(data, 100)

# plot kernel density estimates
x, kde = vonmises_kde(data, 20)
axes[1].plot(x, kde)

直方图和核密度图


谢谢,这个很好用。我认为在def vonmises_kde...中,您可以省去一个变量xbins - Dzamo Norton
这很有趣,不过如果它显示在极坐标投影上会更有用。 - Reinderien

7

以下是对@kingjr更精确答案的快速近似值

def vonmises_pdf(x, mu, kappa):
    return np.exp(kappa * np.cos(x - mu)) / (2. * np.pi * scipy.special.i0(kappa))


def vonmises_fft_kde(data, kappa, n_bins):
    bins = np.linspace(-np.pi, np.pi, n_bins + 1, endpoint=True)
    hist_n, bin_edges = np.histogram(data, bins=bins)
    bin_centers = np.mean([bin_edges[1:], bin_edges[:-1]], axis=0)
    kernel = vonmises_pdf(
        x=bin_centers,
        mu=0,
        kappa=kappa
    )
    kde = np.fft.fftshift(np.fft.irfft(np.fft.rfft(kernel) * np.fft.rfft(hist_n)))
    kde /= np.trapz(kde, x=bin_centers)
    return bin_centers, kde

测试(使用tqdm进行进度条和时间显示,使用matplotlib验证结果):

import numpy as np
from tqdm import tqdm
import scipy.stats
import matplotlib.pyplot as plt

n_runs = 1000
n_bins = 100
kappa = 10

for _ in tqdm(xrange(n_runs)):
    bins1, kde1 = vonmises_kde(
        data=np.r_[
            np.random.vonmises(-1, 5, 1000),
            np.random.vonmises(2, 10, 500),
            np.random.vonmises(3, 20, 100)
        ],
        kappa=kappa,
        n_bins=n_bins
    )


for _ in tqdm(xrange(n_runs)):
    bins2, kde2 = vonmises_fft_kde(
        data=np.r_[
            np.random.vonmises(-1, 5, 1000),
            np.random.vonmises(2, 10, 500),
            np.random.vonmises(3, 20, 100)
        ],
        kappa=kappa,
        n_bins=n_bins
    )

plt.figure()
plt.plot(bins1, kde1, label="kingjr's solution")
plt.plot(bins2, kde2, label="dolf's FFT solution")
plt.legend()
plt.show()

结果:

100%|██████████| 1000/1000 [00:07<00:00, 135.29it/s]
100%|██████████| 1000/1000 [00:00<00:00, 1945.14it/s]

(1945 / 135 = 14倍更快)

This is how close the results are for the FFT-approximation with 100 bins.

为了获得更快的速度,请使用2的整数次幂作为箱子数量。它也可以更好地扩展(即在许多箱子和大量数据的情况下仍保持快速)。在我的PC上,与n_bins = 1024原始答案相比,速度提高了118倍。
它为什么有效?
两个信号的FFT乘积(不进行零填充)等于两个信号的循环卷积核密度估计基本上是将内核与具有每个数据点位置的脉冲的信号进行卷积。
为什么它不是精确的?

由于使用直方图将数据均匀分布,因此失去了每个样本的确切位置,仅使用其所属的箱子的中心。每个箱子中的样本数量用作该点脉冲的大小。例如:暂时忽略归一化,如果您有从0到1的箱子,并且在该箱子中有两个样本,一个在0.1处,另一个在0.2处,则精确 KDE 将是 以0.1为中心的核函数 + 以0.2为中心的核函数。近似值将是2x `以0.5为中心的核函数,即箱子的中心。


1
作为对 @kingjr 答案的一个小但非常重要的补充:我预计许多开发人员希望以极坐标投影的方式显示此 KDE,如下所示:
import matplotlib.pyplot as plt
import numpy as np
from numpy.random import vonmises


def vonmises_kde(data, kappa, n_bins=100):
    from scipy.special import i0
    bins = np.linspace(-np.pi, np.pi, n_bins)
    x = np.linspace(-np.pi, np.pi, n_bins)
    # integrate vonmises kernels
    kde = np.exp(kappa*np.cos(x[:, None]-data[None, :])).sum(1)/(2*np.pi*i0(kappa))
    kde /= np.trapz(kde, x=bins)
    return bins, kde


# generate complex circular distribution
data = np.r_[vonmises(-1, 5, 1000), vonmises(2, 10, 500), vonmises(3, 20, 100)]

# plot data histogram
fig, axes = plt.subplots(2, 1, subplot_kw={'projection': 'polar'})
axes[0].hist(data, 100)

# plot kernel density estimates
x, kde = vonmises_kde(data, 20)
axes[1].plot(x, kde)

plt.show()

radial plots


0

所以我认为我有一个合理的解决方案。基本上,我使用Von Mises分布作为核密度估计的基础函数。如果对其他人有用,下面是代码。

def vonmises_KDE(data, kappa, plot=None):       

    """    
    Create a kernal densisity estimate of circular data using the von mises 
    distribution as the basis function.

    """

    # imports
    from scipy.stats import vonmises
    from scipy.interpolate import interp1d

    # convert to radians
    data = np.radians(data)

    # set limits for von mises
    vonmises.a = -np.pi
    vonmises.b = np.pi
    x_data = np.linspace(-np.pi, np.pi, 100)

    kernels = []

    for d in data:

        # Make the basis function as a von mises PDF
        kernel = vonmises(kappa, loc=d)
        kernel = kernel.pdf(x_data)
        kernels.append(kernel)

        if plot:
            # For plotting
            kernel /= kernel.max()
            kernel *= .2
            plt.plot(x_data, kernel, "grey", alpha=.5)


    vonmises_kde = np.sum(kernels, axis=0)
    vonmises_kde = vonmises_kde / np.trapz(vonmises_kde, x=x_data)
    f = interp1d( x_data, vonmises_kde )


    if plot:
        plt.plot(x_data, vonmises_kde, c='red')  

    return x_data, vonmises_kde, f

baz = np.array([-92.29061004, -85.42607874, -85.42607874, -70.01689348,
               -63.43494882, -63.43494882, -70.01689348, -70.01689348,
               -59.93141718, -63.43494882, -59.93141718, -63.43494882,
               -63.43494882, -63.43494882, -57.52880771, -53.61564818,
               -57.52880771, -63.43494882, -63.43494882, -92.29061004,
               -16.92751306, -99.09027692, -99.09027692, -16.92751306,
               -99.09027692, -16.92751306,  -9.86580694,  -8.74616226,
                -9.86580694,  -8.74616226,  -8.74616226,  -2.20259816,
                -2.20259816,  -2.20259816,  -9.86580694,  -2.20259816,
                -2.48955292,  -2.48955292,  -2.48955292,  -2.48955292,
                 4.96974073,   4.96974073,   4.96974073,   4.96974073,
                -2.48955292,  -2.48955292,  -2.48955292,  -2.48955292,
                -2.48955292,  -9.86580694,  -9.86580694,  -9.86580694,
               -16.92751306, -19.29004622, -19.29004622, -26.56505118,
               -19.29004622, -19.29004622, -19.29004622, -19.29004622])   
kappa = 12
x_data, vonmises_kde, f = vonmises_KDE(baz, kappa, plot=1)

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接