OpenCV卡尔曼滤波器Python

4

有人能提供给我一个在Python 2.7和OpenCV 2.4.13中实现卡尔曼滤波器的示例代码或一些示例吗?

我想将其应用于视频中以跟踪一个人,但我没有任何学习参考,也找不到任何Python示例。

我知道Kalman Filter在OpenCV中存在,可以使用cv2.KalmanFilter,但我不知道如何使用它。任何指导将不胜感激。

2个回答

13

kalman.py代码如下,是包含在GitHub上OpenCV 3.2源代码中的示例。如果需要,可以轻松将语法更改回2.4。

#!/usr/bin/env python
"""
   Tracking of rotating point.
   Rotation speed is constant.
   Both state and measurements vectors are 1D (a point angle),
   Measurement is the real point angle + gaussian noise.
   The real and the estimated points are connected with yellow line segment,
   the real and the measured points are connected with red line segment.
   (if Kalman filter works correctly,
    the yellow segment should be shorter than the red one).
   Pressing any key (except ESC) will reset the tracking with a different speed.
   Pressing ESC will stop the program.
"""
# Python 2/3 compatibility
import sys
PY3 = sys.version_info[0] == 3

if PY3:
    long = int

import cv2
from math import cos, sin, sqrt
import numpy as np

if __name__ == "__main__":

    img_height = 500
    img_width = 500
    kalman = cv2.KalmanFilter(2, 1, 0)

    code = long(-1)

    cv2.namedWindow("Kalman")

    while True:
        state = 0.1 * np.random.randn(2, 1)

        kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]])
        kalman.measurementMatrix = 1. * np.ones((1, 2))
        kalman.processNoiseCov = 1e-5 * np.eye(2)
        kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1))
        kalman.errorCovPost = 1. * np.ones((2, 2))
        kalman.statePost = 0.1 * np.random.randn(2, 1)

        while True:
            def calc_point(angle):
                return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int),
                        np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int))

            state_angle = state[0, 0]
            state_pt = calc_point(state_angle)

            prediction = kalman.predict()
            predict_angle = prediction[0, 0]
            predict_pt = calc_point(predict_angle)

            measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)

            # generate measurement
            measurement = np.dot(kalman.measurementMatrix, state) + measurement

            measurement_angle = measurement[0, 0]
            measurement_pt = calc_point(measurement_angle)

            # plot points
            def draw_cross(center, color, d):
                cv2.line(img,
                         (center[0] - d, center[1] - d), (center[0] + d, center[1] + d),
                         color, 1, cv2.LINE_AA, 0)
                cv2.line(img,
                         (center[0] + d, center[1] - d), (center[0] - d, center[1] + d),
                         color, 1, cv2.LINE_AA, 0)

            img = np.zeros((img_height, img_width, 3), np.uint8)
            draw_cross(np.int32(state_pt), (255, 255, 255), 3)
            draw_cross(np.int32(measurement_pt), (0, 0, 255), 3)
            draw_cross(np.int32(predict_pt), (0, 255, 0), 3)

            cv2.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv2.LINE_AA, 0)
            cv2.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv2.LINE_AA, 0)

            kalman.correct(measurement)

            process_noise = sqrt(kalman.processNoiseCov[0,0]) * np.random.randn(2, 1)
            state = np.dot(kalman.transitionMatrix, state) + process_noise

            cv2.imshow("Kalman", img)

            code = cv2.waitKey(100)
            if code != -1:
                break

        if code in [27, ord('q'), ord('Q')]:
            break

    cv2.destroyWindow("Kalman")

这里是关于Kalman Filter的OpenCV 2.4文档,希望对你有所帮助。


2

我知道您特别提到了需要“Python 2.7”代码。但是,如果有人需要,我可以提供一些相关信息。

我的频道中有一个关于多目标跟踪的视频:https://www.youtube.com/watch?v=bkn6M4LAoHk

以下是您应该了解的卡尔曼滤波和多人跟踪的基础知识:

  • 相机作为传感器:您需要一个合适的检测器(如YOLO等),以提供逐帧边界框。

  • 跟踪边界框: 跟踪处理由卡尔曼滤波框架完成。八维状态空间包含边界框中心位置、长宽比、高度及其在图像坐标系中的速度。使用标准的卡尔曼滤波器,采用恒定速度运动和线性观测模型,其中边界坐标被视为对象状态的直接观测。

  • 逐帧关联:如果场景中有三个人怎么办?由于检测器不提供边界框的任何标识,因此需要将当前帧的边界框与之前的边界框进行匹配。建议您在此搜索“Gating”和“Data Association”关键字。

class KalmanFilter(object):
    """
    A simple Kalman filter for tracking bounding boxes in image space.
    The 8-dimensional state space
        x, y, a, h, vx, vy, va, vh
    contains the bounding box center position (x, y), aspect ratio a, height h,
    and their respective velocities.
    Object motion follows a constant velocity model. The bounding box location
    (x, y, a, h) is taken as direct observation of the state space (linear
    observation model).
    """

    def __init__(self):
        ndim, dt = 4, 1.

        # Create Kalman filter model matrices.
        self._motion_mat = np.eye(2 * ndim, 2 * ndim)
        for i in range(ndim):
            self._motion_mat[i, ndim + i] = dt
        self._update_mat = np.eye(ndim, 2 * ndim)

        # Motion and observation uncertainty are chosen relative to the current
        # state estimate. These weights control the amount of uncertainty in
        # the model. This is a bit hacky.
        self._std_weight_position = 1. / 20
        self._std_weight_velocity = 1. / 160

    def initiate(self, measurement):
        """Create track from unassociated measurement.
        Parameters
        ----------
        measurement : ndarray
            Bounding box coordinates (x, y, a, h) with center position (x, y),
            aspect ratio a, and height h.
        Returns
        -------
        (ndarray, ndarray)
            Returns the mean vector (8 dimensional) and covariance matrix (8x8
            dimensional) of the new track. Unobserved velocities are initialized
            to 0 mean.
        """
        mean_pos = measurement
        mean_vel = np.zeros_like(mean_pos)
        mean = np.r_[mean_pos, mean_vel]

        std = [
            2 * self._std_weight_position * measurement[3],
            2 * self._std_weight_position * measurement[3],
            1e-2,
            2 * self._std_weight_position * measurement[3],
            10 * self._std_weight_velocity * measurement[3],
            10 * self._std_weight_velocity * measurement[3],
            1e-5,
            10 * self._std_weight_velocity * measurement[3]]
        covariance = np.diag(np.square(std))
        return mean, covariance

    def predict(self, mean, covariance):
        """Run Kalman filter prediction step.
        Parameters
        ----------
        mean : ndarray
            The 8 dimensional mean vector of the object state at the previous
            time step.
        covariance : ndarray
            The 8x8 dimensional covariance matrix of the object state at the
            previous time step.
        Returns
        -------
        (ndarray, ndarray)
            Returns the mean vector and covariance matrix of the predicted
            state. Unobserved velocities are initialized to 0 mean.
        """
        std_pos = [
            self._std_weight_position * mean[3],
            self._std_weight_position * mean[3],
            1e-2,
            self._std_weight_position * mean[3]]
        std_vel = [
            self._std_weight_velocity * mean[3],
            self._std_weight_velocity * mean[3],
            1e-5,
            self._std_weight_velocity * mean[3]]
        motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))

        mean = np.dot(self._motion_mat, mean)
        covariance = np.linalg.multi_dot((
            self._motion_mat, covariance, self._motion_mat.T)) + motion_cov

        return mean, covariance

    def project(self, mean, covariance):
        """Project state distribution to measurement space.
        Parameters
        ----------
        mean : ndarray
            The state's mean vector (8 dimensional array).
        covariance : ndarray
            The state's covariance matrix (8x8 dimensional).
        Returns
        -------
        (ndarray, ndarray)
            Returns the projected mean and covariance matrix of the given state
            estimate.
        """
        std = [
            self._std_weight_position * mean[3],
            self._std_weight_position * mean[3],
            1e-1,
            self._std_weight_position * mean[3]]
        innovation_cov = np.diag(np.square(std))

        mean = np.dot(self._update_mat, mean)
        covariance = np.linalg.multi_dot((
            self._update_mat, covariance, self._update_mat.T))
        return mean, covariance + innovation_cov

    def update(self, mean, covariance, measurement):
        """Run Kalman filter correction step.
        Parameters
        ----------
        mean : ndarray
            The predicted state's mean vector (8 dimensional).
        covariance : ndarray
            The state's covariance matrix (8x8 dimensional).
        measurement : ndarray
            The 4 dimensional measurement vector (x, y, a, h), where (x, y)
            is the center position, a the aspect ratio, and h the height of the
            bounding box.
        Returns
        -------
        (ndarray, ndarray)
            Returns the measurement-corrected state distribution.
        """
        projected_mean, projected_cov = self.project(mean, covariance)

        chol_factor, lower = scipy.linalg.cho_factor(
            projected_cov, lower=True, check_finite=False)
        kalman_gain = scipy.linalg.cho_solve(
            (chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
            check_finite=False).T
        innovation = measurement - projected_mean

        new_mean = mean + np.dot(innovation, kalman_gain.T)
        new_covariance = covariance - np.linalg.multi_dot((
            kalman_gain, projected_cov, kalman_gain.T))
        return new_mean, new_covariance

    def gating_distance(self, mean, covariance, measurements,
                        only_position=False):
        """Compute gating distance between state distribution and measurements.
        A suitable distance threshold can be obtained from `chi2inv95`. If
        `only_position` is False, the chi-square distribution has 4 degrees of
        freedom, otherwise 2.
        Parameters
        ----------
        mean : ndarray
            Mean vector over the state distribution (8 dimensional).
        covariance : ndarray
            Covariance of the state distribution (8x8 dimensional).
        measurements : ndarray
            An Nx4 dimensional matrix of N measurements, each in
            format (x, y, a, h) where (x, y) is the bounding box center
            position, a the aspect ratio, and h the height.
        only_position : Optional[bool]
            If True, distance computation is done with respect to the bounding
            box center position only.
        Returns
        -------
        ndarray
            Returns an array of length N, where the i-th element contains the
            squared Mahalanobis distance between (mean, covariance) and
            `measurements[i]`.
        """
        mean, covariance = self.project(mean, covariance)
        if only_position:
            mean, covariance = mean[:2], covariance[:2, :2]
            measurements = measurements[:, :2]

        cholesky_factor = np.linalg.cholesky(covariance)
        d = measurements - mean
        z = scipy.linalg.solve_triangular(
            cholesky_factor, d.T, lower=True, check_finite=False,
            overwrite_b=True)
        squared_maha = np.sum(z * z, axis=0)
        return squared_maha

这是一个基本的多目标跟踪器。

class Tracker:
    """
    This is the multi-target tracker.
    Parameters
    ----------
    metric : nn_matching.NearestNeighborDistanceMetric
        A distance metric for measurement-to-track association.
    max_age : int
        Maximum number of missed misses before a track is deleted.
    n_init : int
        Number of consecutive detections before the track is confirmed. The
        track state is set to `Deleted` if a miss occurs within the first
        `n_init` frames.
    Attributes
    ----------
    metric : nn_matching.NearestNeighborDistanceMetric
        The distance metric used for measurement to track association.
    max_age : int
        Maximum number of missed misses before a track is deleted.
    n_init : int
        Number of frames that a track remains in initialization phase.
    kf : kalman_filter.KalmanFilter
        A Kalman filter to filter target trajectories in image space.
    tracks : List[Track]
        The list of active tracks at the current time step.
    """

    def __init__(self, metric, max_iou_distance=0.7, max_age=30, n_init=3):
        self.metric = metric
        self.max_iou_distance = max_iou_distance
        self.max_age = max_age
        self.n_init = n_init

        self.kf = kalman_filter.KalmanFilter()
        self.tracks = []
        self._next_id = 1

    def predict(self):
        """Propagate track state distributions one time step forward.
        This function should be called once every time step, before `update`.
        """
        for track in self.tracks:
            track.predict(self.kf)

    def update(self, detections):
        """Perform measurement update and track management.
        Parameters
        ----------
        detections : List[deep_sort.detection.Detection]
            A list of detections at the current time step.
        """
        # Run matching cascade.
        matches, unmatched_tracks, unmatched_detections = \
            self._match(detections)

        # Update track set.
        for track_idx, detection_idx in matches:
            self.tracks[track_idx].update(
                self.kf, detections[detection_idx])
        for track_idx in unmatched_tracks:
            self.tracks[track_idx].mark_missed()
        for detection_idx in unmatched_detections:
            self._initiate_track(detections[detection_idx])
        self.tracks = [t for t in self.tracks if not t.is_deleted()]

        # Update distance metric.
        active_targets = [t.track_id for t in self.tracks if t.is_confirmed()]
        features, targets = [], []
        for track in self.tracks:
            if not track.is_confirmed():
                continue
            features += track.features
            targets += [track.track_id for _ in track.features]
            track.features = []
        self.metric.partial_fit(
            np.asarray(features), np.asarray(targets), active_targets)

    def _match(self, detections):

        def gated_metric(tracks, dets, track_indices, detection_indices):
            features = np.array([dets[i].feature for i in detection_indices])
            targets = np.array([tracks[i].track_id for i in track_indices])
            cost_matrix = self.metric.distance(features, targets)
            cost_matrix = linear_assignment.gate_cost_matrix(
                self.kf, cost_matrix, tracks, dets, track_indices,
                detection_indices)

            return cost_matrix

        # Split track set into confirmed and unconfirmed tracks.
        confirmed_tracks = [
            i for i, t in enumerate(self.tracks) if t.is_confirmed()]
        unconfirmed_tracks = [
            i for i, t in enumerate(self.tracks) if not t.is_confirmed()]

        # Associate confirmed tracks using appearance features.
        matches_a, unmatched_tracks_a, unmatched_detections = \
            linear_assignment.matching_cascade(
                gated_metric, self.metric.matching_threshold, self.max_age,
                self.tracks, detections, confirmed_tracks)

        # Associate remaining tracks together with unconfirmed tracks using IOU.
        iou_track_candidates = unconfirmed_tracks + [
            k for k in unmatched_tracks_a if
            self.tracks[k].time_since_update == 1]
        unmatched_tracks_a = [
            k for k in unmatched_tracks_a if
            self.tracks[k].time_since_update != 1]
        matches_b, unmatched_tracks_b, unmatched_detections = \
            linear_assignment.min_cost_matching(
                iou_matching.iou_cost, self.max_iou_distance, self.tracks,
                detections, iou_track_candidates, unmatched_detections)

        matches = matches_a + matches_b
        unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b))
        return matches, unmatched_tracks, unmatched_detections

    def _initiate_track(self, detection):
        mean, covariance = self.kf.initiate(detection.to_xyah())
        self.tracks.append(Track(
            mean, covariance, self._next_id, self.n_init, self.max_age,
            detection.feature))
        self._next_id += 1

感谢您的整洁实现!我注意到您将纵横比的标准差设置为非常小的数字1e-2,能否请您解释一下理由?我的理解是卡尔曼滤波器会对纵横比的变化非常敏感。因此,纵横比将在计算两个框之间相似性方面发挥至关重要的作用,不是吗?谢谢! - Shaohua Li
这个被接受的答案应该更新为这样。 - Rayyan

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接