没有相机信息的情况下从2张图像进行3D重建

36

我是这个领域的新手,正在尝试将2D图像建模为简单的3D场景,但我没有有关相机的任何信息。我知道有三种选择

  • 我有两张图片,我知道我的相机模型(内参)是从一个XML文件中加载的,例如loadXMLFromFile() => stereoRectify() => reprojectImageTo3D()

  • 我没有这些内容,但我可以校准我的相机 => stereoCalibrate() => stereoRectify() => reprojectImageTo3D()

  • 我无法校准相机(这是我的情况,因为我没有拍摄这2张图像的相机),所以我需要在两张图像上找到一对关键点,例如使用SURF、SIFT检测器(实际上还可以使用任何blob检测器),然后计算这些关键点的描述符,然后将左图和右图的关键点进行匹配,然后从它们中找到基本矩阵。处理过程更加复杂,如下所示:

    1. 检测关键点(SURF、SIFT)=>
    2. 提取描述符(SURF、SIFT)=>
    3. 比较和匹配描述符(BruteForce、Flann)=>
    4. 从这些匹配对中找出基本矩阵(findFundamentalMat()) =>
    5. stereoRectifyUncalibrated() =>
    6. reprojectImageTo3D()
我将使用最后一种方法,我的问题是:
1)这样做对吗?
2)如果可以,我对最后一步 stereoRectifyUncalibrated() => reprojectImageTo3D() 有疑问。 reprojectImageTo3D() 函数的签名如下:
void reprojectImageTo3D(InputArray disparity, OutputArray _3dImage, InputArray Q, bool handleMissingValues=false, int depth=-1 )

cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true) (in my code)

参数:

  • disparity – 输入单通道8位无符号、16位有符号、32位有符号或32位浮点视差图像。
  • _3dImage – 输出与disparity大小相同的三通道浮点图像。 _3dImage(x,y)的每个元素都包含从视差图计算的点(x,y)的3D坐标。
  • Q – 4x4透视变换矩阵,可使用stereoRectify()获得。
  • handleMissingValues – 表示函数是否应处理缺失值(即未计算视差的点)。如果handleMissingValues=true,则对应于异常值(请参见StereoBM :: operator())的最小视差像素被转换为具有非常大Z值的3D点(当前设置为10000)。
  • ddepth – 可选输出数组深度。如果它是-1,则输出图像将具有CV_32F深度。ddepth也可以设置为CV_16SCV_32SCV_32F

我该如何获得 Q 矩阵?是否可以通过 FH1H2 或其他方式获得 Q 矩阵?

3) 是否有其他方法可以获得 xyz 坐标而无需校准相机?

我的代码如下:

#include <opencv2/core/core.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/contrib/contrib.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <conio.h>
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <opencv/cvaux.h>


using namespace cv;
using namespace std;

int main(int argc, char *argv[]){

    // Read the images
    Mat imgLeft = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
    Mat imgRight = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );

    // check
    if (!imgLeft.data || !imgRight.data)
            return 0;

    // 1] find pair keypoints on both images (SURF, SIFT):::::::::::::::::::::::::::::

    // vector of keypoints
    std::vector<cv::KeyPoint> keypointsLeft;
    std::vector<cv::KeyPoint> keypointsRight;

    // Construct the SURF feature detector object
    cv::SiftFeatureDetector sift(
            0.01, // feature threshold
            10); // threshold to reduce
                // sensitivity to lines
                // Detect the SURF features

    // Detection of the SIFT features
    sift.detect(imgLeft,keypointsLeft);
    sift.detect(imgRight,keypointsRight);

    std::cout << "Number of SURF points (1): " << keypointsLeft.size() << std::endl;
    std::cout << "Number of SURF points (2): " << keypointsRight.size() << std::endl;

    // 2] compute descriptors of these keypoints (SURF,SIFT) ::::::::::::::::::::::::::

    // Construction of the SURF descriptor extractor
    cv::SurfDescriptorExtractor surfDesc;

    // Extraction of the SURF descriptors
    cv::Mat descriptorsLeft, descriptorsRight;
    surfDesc.compute(imgLeft,keypointsLeft,descriptorsLeft);
    surfDesc.compute(imgRight,keypointsRight,descriptorsRight);

    std::cout << "descriptor matrix size: " << descriptorsLeft.rows << " by " << descriptorsLeft.cols << std::endl;

    // 3] matching keypoints from image right and image left according to their descriptors (BruteForce, Flann based approaches)

    // Construction of the matcher
    cv::BruteForceMatcher<cv::L2<float> > matcher;

    // Match the two image descriptors
    std::vector<cv::DMatch> matches;
    matcher.match(descriptorsLeft,descriptorsRight, matches);

    std::cout << "Number of matched points: " << matches.size() << std::endl;


    // 4] find the fundamental mat ::::::::::::::::::::::::::::::::::::::::::::::::::::

    // Convert 1 vector of keypoints into
    // 2 vectors of Point2f for compute F matrix
    // with cv::findFundamentalMat() function
    std::vector<int> pointIndexesLeft;
    std::vector<int> pointIndexesRight;
    for (std::vector<cv::DMatch>::const_iterator it= matches.begin(); it!= matches.end(); ++it) {

         // Get the indexes of the selected matched keypoints
         pointIndexesLeft.push_back(it->queryIdx);
         pointIndexesRight.push_back(it->trainIdx);
    }

    // Convert keypoints into Point2f
    std::vector<cv::Point2f> selPointsLeft, selPointsRight;
    cv::KeyPoint::convert(keypointsLeft,selPointsLeft,pointIndexesLeft);
    cv::KeyPoint::convert(keypointsRight,selPointsRight,pointIndexesRight);

    /* check by drawing the points
    std::vector<cv::Point2f>::const_iterator it= selPointsLeft.begin();
    while (it!=selPointsLeft.end()) {

            // draw a circle at each corner location
            cv::circle(imgLeft,*it,3,cv::Scalar(255,255,255),2);
            ++it;
    }

    it= selPointsRight.begin();
    while (it!=selPointsRight.end()) {

            // draw a circle at each corner location
            cv::circle(imgRight,*it,3,cv::Scalar(255,255,255),2);
            ++it;
    } */

    // Compute F matrix from n>=8 matches
    cv::Mat fundemental= cv::findFundamentalMat(
            cv::Mat(selPointsLeft), // points in first image
            cv::Mat(selPointsRight), // points in second image
            CV_FM_RANSAC);       // 8-point method

    std::cout << "F-Matrix size= " << fundemental.rows << "," << fundemental.cols << std::endl;

    /* draw the left points corresponding epipolar lines in right image
    std::vector<cv::Vec3f> linesLeft;
    cv::computeCorrespondEpilines(
            cv::Mat(selPointsLeft), // image points
            1,                      // in image 1 (can also be 2)
            fundemental,            // F matrix
            linesLeft);             // vector of epipolar lines

    // for all epipolar lines
    for (vector<cv::Vec3f>::const_iterator it= linesLeft.begin(); it!=linesLeft.end(); ++it) {

        // draw the epipolar line between first and last column
        cv::line(imgRight,cv::Point(0,-(*it)[2]/(*it)[1]),cv::Point(imgRight.cols,-((*it)[2]+(*it)[0]*imgRight.cols)/(*it)[1]),cv::Scalar(255,255,255));
    }

    // draw the left points corresponding epipolar lines in left image
    std::vector<cv::Vec3f> linesRight;
    cv::computeCorrespondEpilines(cv::Mat(selPointsRight),2,fundemental,linesRight);
    for (vector<cv::Vec3f>::const_iterator it= linesRight.begin(); it!=linesRight.end(); ++it) {

        // draw the epipolar line between first and last column
        cv::line(imgLeft,cv::Point(0,-(*it)[2]/(*it)[1]), cv::Point(imgLeft.cols,-((*it)[2]+(*it)[0]*imgLeft.cols)/(*it)[1]), cv::Scalar(255,255,255));
    }

    // Display the images with points and epipolar lines
    cv::namedWindow("Right Image Epilines");
    cv::imshow("Right Image Epilines",imgRight);
    cv::namedWindow("Left Image Epilines");
    cv::imshow("Left Image Epilines",imgLeft);
    */

    // 5] stereoRectifyUncalibrated()::::::::::::::::::::::::::::::::::::::::::::::::::

    //H1, H2 – The output rectification homography matrices for the first and for the second images.
    cv::Mat H1(4,4, imgRight.type());
    cv::Mat H2(4,4, imgRight.type());
    cv::stereoRectifyUncalibrated(selPointsRight, selPointsLeft, fundemental, imgRight.size(), H1, H2);


    // create the image in which we will save our disparities
    Mat imgDisparity16S = Mat( imgLeft.rows, imgLeft.cols, CV_16S );
    Mat imgDisparity8U = Mat( imgLeft.rows, imgLeft.cols, CV_8UC1 );

    // Call the constructor for StereoBM
    int ndisparities = 16*5;      // < Range of disparity >
    int SADWindowSize = 5;        // < Size of the block window > Must be odd. Is the 
                                  // size of averaging window used to match pixel  
                                  // blocks(larger values mean better robustness to
                                  // noise, but yield blurry disparity maps)

    StereoBM sbm( StereoBM::BASIC_PRESET,
        ndisparities,
        SADWindowSize );

    // Calculate the disparity image
    sbm( imgLeft, imgRight, imgDisparity16S, CV_16S );

    // Check its extreme values
    double minVal; double maxVal;

    minMaxLoc( imgDisparity16S, &minVal, &maxVal );

    printf("Min disp: %f Max value: %f \n", minVal, maxVal);

    // Display it as a CV_8UC1 image
    imgDisparity16S.convertTo( imgDisparity8U, CV_8UC1, 255/(maxVal - minVal));

    namedWindow( "windowDisparity", CV_WINDOW_NORMAL );
    imshow( "windowDisparity", imgDisparity8U );


    // 6] reprojectImageTo3D() :::::::::::::::::::::::::::::::::::::::::::::::::::::

    //Mat xyz;
    //cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true);

    //How can I get the Q matrix? Is possibile to obtain the Q matrix with 
    //F, H1 and H2 or in another way?
    //Is there another way for obtain the xyz coordinates?

    cv::waitKey();
    return 0;
}

我认为你的想法是正确的,但你忽略了一些细节。可以使用几个函数来获取差异值,你应该查阅OpenCV的文档。 http://opencv.willowgarage.com/documentation/camera_calibration_and_3d_reconstruction.html - Jav_Rock
@Jav_Rock 好的...但你能更具体一些吗?如果你考虑我的代码,我可以使用什么样的函数?这是我的代码: - Fobi
我不知道因为我没有使用过以差异作为输入的函数,但如果我在做你的工作,我会尝试其中一个,比如cvFindStereoCorrespondenceBM()。问题是我不知道如何获取状态,这就是为什么我没有具体说明的原因。但你可以尝试手动给出值(虚构的),只是为了能够计算一些东西。你尝试和犯错的次数越多,你就会学到更多。很抱歉我不能提供更多帮助。 - Jav_Rock
@jmartel,你觉得这个怎么样? - Fobi
显示剩余2条评论
3个回答

5
StereoRectifyUncalibrated可以计算简单的平面透视变换,而不是在物体空间中进行的矫正变换。要提取Q矩阵,需要将这个平面变换转换为物体空间变换,我认为其中一些相机校准参数是必需的(如相机内参)。关于这个问题可能会有一些正在研究的课题。
您可能需要添加一些步骤来估计相机内参和提取相对定位,以使您的流程正确运作。如果没有使用主动光照方法,我认为相机校准参数对于提取场景的适当三维结构至关重要。
此外,基于捆绑块调整的解决方案需要用于将所有估计值精确地调整到更准确的值。

2
  1. 我认为这个流程看起来没问题。

  2. 据我所知,关于基于图像的三维建模,相机可以显式校准或隐式校准。你不需要显式地校准相机。你无论如何都会利用那些东西。匹配对应点对绝对是一个经常使用的方法。


1
我认为你需要使用StereoRectify来校正图像并获取Q值。这个函数需要两个参数(R和T)即两个相机之间的旋转和平移。因此,您可以使用solvePnP计算参数。这个函数需要某个物体的一些三维真实坐标以及图像中的2D点和它们对应的点。

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接