对数对数图线性回归

22
fig = plt.figure();
ax=plt.gca() 
ax.scatter(x,y,c="blue",alpha=0.95,edgecolors='none')
ax.set_yscale('log')
ax.set_xscale('log')

(Pdb) print x,y
    [29, 36, 8, 32, 11, 60, 16, 242, 36, 115, 5, 102, 3, 16, 71, 0, 0, 21, 347, 19, 12, 162, 11, 224, 20, 1, 14, 6, 3, 346, 73, 51, 42, 37, 251, 21, 100, 11, 53, 118, 82, 113, 21, 0, 42, 42, 105, 9, 96, 93, 39, 66, 66, 33, 354, 16, 602]
     [310000, 150000, 70000, 30000, 50000, 150000, 2000, 12000, 2500, 10000, 12000, 500, 3000, 25000, 400, 2000, 15000, 30000, 150000, 4500, 1500, 10000, 60000, 50000, 15000, 30000, 3500, 4730, 3000, 30000, 70000, 15000, 80000, 85000, 2200]

我应该如何在这个图上绘制一个线性回归线?当然,它应该使用对数值。

x=np.array(x)
y=np.array(y)
fig = plt.figure()
ax=plt.gca() 
fit = np.polyfit(x, y, deg=1)
ax.plot(x, fit[0] *x + fit[1], color='red') # add reg line
ax.scatter(x,y,c="blue",alpha=0.95,edgecolors='none')
ax.set_yscale('symlog')
ax.set_xscale('symlog')
pdb.set_trace()

结果:

由于存在多条曲线和空白区域,结果不正确。 图像描述

数据:

(Pdb) x
array([  29.,   36.,    8.,   32.,   11.,   60.,   16.,  242.,   36.,
        115.,    5.,  102.,    3.,   16.,   71.,    0.,    0.,   21.,
        347.,   19.,   12.,  162.,   11.,  224.,   20.,    1.,   14.,
          6.,    3.,  346.,   73.,   51.,   42.,   37.,  251.,   21.,
        100.,   11.,   53.,  118.,   82.,  113.,   21.,    0.,   42.,
         42.,  105.,    9.,   96.,   93.,   39.,   66.,   66.,   33.,
        354.,   16.,  602.])
(Pdb) y
array([ 30,  47, 115,  50,  40, 200, 120, 168,  39, 100,   2, 100,  14,
        50, 200,  63,  15, 510, 755, 135,  13,  47,  36, 425,  50,   4,
        41,  34,  30, 289, 392, 200,  37,  15, 200,  50, 200, 247, 150,
       180, 147, 500,  48,  73,  50,  55, 108,  28,  55, 100, 500,  61,
       145, 400, 500,  40, 250])
(Pdb) 
3个回答

29

对数坐标图上唯一呈直线形态的数学形式是指数函数。

由于数据中包含x = 0,因此无法仅将线条拟合到log(y) = k*log(x) + a,因为log(0)未定义。因此,我们需要使用一个指数拟合函数,而不是多项式。为此,我们将使用scipy.optimize及其curve_fit函数。我们将使用一个指数函数和另一个稍微更复杂的函数来说明如何使用这个函数:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# Abhishek Bhatia's data & scatter plot.
x = np.array([  29.,   36.,    8.,   32.,   11.,   60.,   16.,  242.,   36.,
               115.,    5.,  102.,    3.,   16.,   71.,    0.,    0.,   21.,
               347.,   19.,   12.,  162.,   11.,  224.,   20.,    1.,   14.,
                 6.,    3.,  346.,   73.,   51.,   42.,   37.,  251.,   21.,
               100.,   11.,   53.,  118.,   82.,  113.,   21.,    0.,   42.,
                42.,  105.,    9.,   96.,   93.,   39.,   66.,   66.,   33.,
               354.,   16.,  602.])
y = np.array([ 30,  47, 115,  50,  40, 200, 120, 168,  39, 100,   2, 100,  14,
               50, 200,  63,  15, 510, 755, 135,  13,  47,  36, 425,  50,   4,
               41,  34,  30, 289, 392, 200,  37,  15, 200,  50, 200, 247, 150,
              180, 147, 500,  48,  73,  50,  55, 108,  28,  55, 100, 500,  61,
              145, 400, 500,  40, 250])
fig = plt.figure()
ax=plt.gca() 
ax.scatter(x,y,c="blue",alpha=0.95,edgecolors='none', label='data')
ax.set_yscale('log')
ax.set_xscale('log')


newX = np.logspace(0, 3, base=10)  # Makes a nice domain for the fitted curves.
                                   # Goes from 10^0 to 10^3
                                   # This avoids the sorting and the swarm of lines.

# Let's fit an exponential function.  
# This looks like a line on a lof-log plot.
def myExpFunc(x, a, b):
    return a * np.power(x, b)
popt, pcov = curve_fit(myExpFunc, x, y)
plt.plot(newX, myExpFunc(newX, *popt), 'r-', 
         label="({0:.3f}*x**{1:.3f})".format(*popt))
print "Exponential Fit: y = (a*(x**b))"
print "\ta = popt[0] = {0}\n\tb = popt[1] = {1}".format(*popt)

# Let's fit a more complicated function.
# This won't look like a line.
def myComplexFunc(x, a, b, c):
    return a * np.power(x, b) + c
popt, pcov = curve_fit(myComplexFunc, x, y)
plt.plot(newX, myComplexFunc(newX, *popt), 'g-', 
         label="({0:.3f}*x**{1:.3f}) + {2:.3f}".format(*popt))
print "Modified Exponential Fit: y = (a*(x**b)) + c"
print "\ta = popt[0] = {0}\n\tb = popt[1] = {1}\n\tc = popt[2] = {2}".format(*popt)

ax.grid(b='on')
plt.legend(loc='lower right')
plt.show()

这将生成以下图形:这里输入图片描述,并在终端中输出以下内容:
kevin@proton:~$ python ./plot.py 
Exponential Fit: y = (a*(x**b))
    a = popt[0] = 26.1736126404
    b = popt[1] = 0.440755784363
Modified Exponential Fit: y = (a*(x**b)) + c
    a = popt[0] = 17.1988418238
    b = popt[1] = 0.501625165466
    c = popt[2] = 22.6584645232

注意:使用ax.set_xscale('log')会隐藏绘图中x=0的点,但这些点对拟合结果有贡献。

11

在对数据取对数之前,您应该注意到第一个数组中存在零值。我将称您的第一个数组为A,第二个数组为B。为了避免失分,建议分析Log(B)与Log(A+1)之间的关系。下面的代码使用scipy.stats.linregress执行线性回归分析关系Log(A+1) vs Log(B),这是一种非常良好的关系。

请注意,linregress中您感兴趣的输出仅是斜率和截距点,这对于绘制关系的直线非常有用。

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import linregress

A = np.array([  29.,   36.,    8.,   32.,   11.,   60.,   16.,  242.,  36.,
    115.,    5.,  102.,    3.,   16.,   71.,    0.,    0.,   21.,
    347.,   19.,   12.,  162.,   11.,  224.,   20.,    1.,   14.,
      6.,    3.,  346.,   73.,   51.,   42.,   37.,  251.,   21.,
    100.,   11.,   53.,  118.,   82.,  113.,   21.,    0.,   42.,
     42.,  105.,    9.,   96.,   93.,   39.,   66.,   66.,   33.,
    354.,   16.,  602.])

B = np.array([ 30,  47, 115,  50,  40, 200, 120, 168,  39, 100,   2, 100,  14,
    50, 200,  63,  15, 510, 755, 135,  13,  47,  36, 425,  50,   4,
    41,  34,  30, 289, 392, 200,  37,  15, 200,  50, 200, 247, 150,
   180, 147, 500,  48,  73,  50,  55, 108,  28,  55, 100, 500,  61,
   145, 400, 500,  40, 250])

slope, intercept, r_value, p_value, std_err = linregress(np.log10(A+1), np.log10(B))

xfid = np.linspace(0,3)     # This is just a set of x to plot the straight line 

plt.plot(np.log10(A+1), np.log10(B), 'k.')
plt.plot(xfid, xfid*slope+intercept)
plt.xlabel('Log(A+1)')
plt.ylabel('Log(B)')
plt.show()

在此输入图片描述


8

在绘制图表之前,您需要先对数组进行排序,并使用“log”而不是“symlog”来消除图表中的空白。请阅读此答案查看对数和对称对数之间的区别。以下代码应该可以实现这一点:

x1 = [X for (X,Y) in sorted(zip(x,y))]
y1 = [Y for (X,Y) in sorted(zip(x,y))]
x=np.array(x1)
y=np.array(y1)
fig = plt.figure()
ax=plt.gca() 
fit = np.polyfit(x, y, deg=1)
ax.plot(x, fit[0] *x + fit[1], color='red') # add reg line
ax.scatter(x,y,c="blue",alpha=0.95,edgecolors='none')
ax.set_yscale('log')
ax.set_xscale('log')
plt.show()

Least Squares Fit


网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接