如何从头开始调试反向传播实现?

4

我从头开始创建了一个简单的神经网络用于二元分类(受到Andrew Ng课程中一个实现的启发)。但是,我认为我在反向传播过程中出现了问题,因为梯度下降无法最小化成本。在这个例子中,在大约第1300次迭代之后,dJ/dW变成NaN(随后W也变成NaN)。我仔细检查了我的方程式,但是我不知道我的错误出在哪里。有任何想法吗?

我的代码:

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

class BinaryClassifier:
    def __init__(self, X, Y, hidden_layers, num_iterations, learning_rate=1.2):
        np.random.seed(1)
        self.X = X
        self.Y = Y
        self.Z = {}
        self.A = {}
        self.W = {}
        self.b = {}
        self.dZ = {} # dJ/dZ (derivative with respect to Z)
        self.dA = {} # dJ/dA (derivative with respect to A)
        self.dW = {} # dJ/dW (derivative with respect to W)
        self.db = {} # dJ/db (derivative with respect to b)
        self.m = self.Y.shape[1] # number of training examples
        
        # hyper parameters:
        self.layers = hidden_layers + [1] # the final layer in logestic regression will be a single logistic unit
        self.L = len(self.layers) # number of layers (not counting the input layer)
        self.num_iterations = num_iterations
        self.learning_rate = learning_rate
                
        ##### initialize parameters: #####
        nodes_prev_layer = self.X.shape[0] # get number of nodes from input layer
        
        for layer, nodes in enumerate(self.layers):
            # n.b. scale `W` with Xavier/He initialization:
            self.W[layer+1] = np.random.randn(nodes, nodes_prev_layer) * np.sqrt(2/nodes_prev_layer)
            self.b[layer+1] = np.zeros((nodes, 1))

            nodes_prev_layer = nodes       
            
    ###### utility functions: #####
    def relu_function(self, Z):
        return np.maximum(Z, 0)

    def sigmoid_function(self, Z):
        return 1/(1 + np.exp(-Z))

    def relu_gradient(self, Z):
        return np.where(Z > 0, 1, 0)

    def sigmoid_gradient(self, Z):
        return self.sigmoid_function(Z) * (1 - self.sigmoid_function(Z))

    ##### forward propagation steps: #####
    def linear_forward(self, A_prev, W, b, activation):
        """ Forward step (linear + activation) for single layer.
        """
        
        Z = np.dot(W, A_prev) + b
    
        if activation == 'relu':
            A = self.relu_function(Z)
        elif activation == 'sigmoid':
            A = self.sigmoid_function(Z)
        else:
            raise ValueError('Invalid activation function: %s' % activation)

        assert A.shape == Z.shape

        return A, Z
    
    def forward_propagation(self):
        """ Feed forward through all layers.
        """
        
        # the 'activated' unit for layer 0 is just the input:
        self.A[0] = np.copy(self.X)

        # propagate and compute activations for hidden layers
        for l in range(1, self.L+1):
            if l < self.L:
                activation = 'relu'
            # use last layer for logistic activation:
            else:
                activation = 'sigmoid'

            self.A[l], self.Z[l] = self.linear_forward(self.A[l-1], self.W[l], self.b[l], activation)

        AL = self.A[self.L]
        return AL

    def compute_cost(self, Y_hat):        
        cost = -1/self.m * np.sum( (self.Y*np.log(Y_hat)) + ((1-self.Y) * np.log(1-Y_hat)) )
        cost = np.squeeze(cost)

        assert(cost.shape == ())

        return cost
    
    ##### backward propagation steps: #####
    def linear_backward(self, A_prev, dA, W, Z, b, activation='relu'):
        """ Backward propagation (activation + linear) for a single layer.
        """
        
        if activation == 'relu':
            dZ = dA * self.relu_gradient(Z)
        elif activation == 'sigmoid':
            dZ = dA * self.sigmoid_gradient(Z)
        else:
            raise ValueError('Invalid activation function: %s' % activation)

        dW = 1/self.m * np.dot(dZ, A_prev.T)
        db = 1/self.m * np.sum(dZ, axis=1, keepdims=True)
        dA_prev = np.dot(W.T, dZ) # dA for the previous layer (dA[l-1])

        assert dA_prev.shape == A_prev.shape
        assert dW.shape == W.shape

        return dA_prev, dZ, dW, db
    
    def backward_propagation(self):
        """ Backward propagation for all layers.
        """
        
        for l in reversed(range(1, self.L+1)):
            if l == self.L:
                self.dA[l] = -(np.divide(self.Y, self.A[l]) - np.divide(1-self.Y, 1-self.A[l]))
                activation = 'sigmoid'
            else:
                activation = 'relu'
            self.dA[l-1], self.dZ[l], self.dW[l], self.db[l] = self.linear_backward(self.A[l-1], self.dA[l], self.W[l], self.Z[l], self.b[l], activation)

    def update_parameters(self):
        """ Updtes W and b parameters after single iteration of backprop.
        """
        
        for l in range(1, self.L+1):
            self.W[l] -= (self.learning_rate * self.dW[l])
            self.b[l] -= (self.learning_rate * self.db[l])

    ##### train/predict methods: #####
    def train_binary_classification_model(self, print_cost=True):
        """ Trains model and updates parameters.
        """
        np.random.seed(1)

        for i in range(self.num_iterations):
            AL = self.forward_propagation()

            if print_cost and i % 500 == 0:
                cost = self.compute_cost(AL)
                print('cost at %s iterations: %s' % (i, cost))

            self.backward_propagation()
            self.update_parameters() 
 
    def predict(self):
        AL = self.forward_propagation()
        return np.where(AL > 0.5, 1, 0)

生成样本数据并训练模型:

def generate_data():
    np.random.seed(1)
    m = 400 # number of examples
    N = int(m/2) # number of points per class
    D = 2 # dimensionality
    X = np.zeros((m,D)) # data matrix where each row is a single example
    Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
    a = 4 # maximum ray of the flower

    for j in range(2):
        ix = range(N*j,N*(j+1))
        t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
        r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
        X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
        Y[ix] = j
        
    X = X.T
    Y = Y.T

    return X, Y

########################################
# main:
########################################
X, Y = generate_data()

# train a binary classifcation model with a single hidden layer (4 nodes):
planar_network = BinaryClassifier(X, Y, [4], 4000, learning_rate=1.2)
planar_network.train_binary_classification_model()

# output:
# cost at 0 iterations: 0.9897586239010666
# cost at 500 iterations: 0.5513227406119928
# cost at 1000 iterations: 0.5457089978185676
# cost at 1500 iterations: nan
# cost at 2000 iterations: nan
# ...
1个回答

2

您得到了 cost = nan,因为在任何一个步骤中,它遇到了无效值

这个网络有两个可能的原因:

  1. log(0)
  2. number/0

所以,您需要更改以下内容:

  1. Add a variable in your class

     self.epsilon = 0.00001
    
  2. Change the function compute_cost:

     def compute_cost(self, Y_hat):        
         cost = -1/self.m * np.sum( (self.Y*np.log(Y_hat+self.epsilon)) + ((1-self.Y) * np.log(1-Y_hat+self.epsilon)) )
         cost = np.squeeze(cost)
    
         assert(cost.shape == ())
    
         return cost
    
  3. Change the function backward_propagation:

     def backward_propagation(self):
         """ Backward propagation for all layers.
         """
    
         for l in reversed(range(1, self.L+1)):
             if l == self.L:
                 self.dA[l] = -(np.divide(self.Y, self.A[l]+self.epsilon) - np.divide(1-self.Y, 1-self.A[l]+self.epsilon))
                 activation = 'sigmoid'
             else:
                 activation = 'relu'
             self.dA[l-1], self.dZ[l], self.dW[l], self.db[l] = self.linear_backward(self.A[l-1], self.dA[l], self.W[l], self.Z[l], self.b[l], activation)
    

在出现无效值的情况下,我添加了 self.epsilon

现在你的代码可以正常工作了。


这确实可以防止NaN错误;然而,梯度下降仍然无法收敛。因此,实现中仍然存在其他潜在问题。 - Eyeofpie
1
它正在收敛。由于您对数据集进行了高度随机化,因此准确性较低。如果您尝试使用更简单(不那么随机化)的数据集,则将获得更高的准确性。 - Rahul Vishwakarma
@Eyeofpie planar_network = BinaryClassifier(X, Y, [8, 16, 16, 8], 40000, learning_rate=4.0) 使用类似或更大的模型,并按 @Rahul Vishwakarma 的建议进行更改,它会起作用。 - Girish Hegde

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接