使用Python计算.wav文件的频谱图

10

我正在尝试使用Python计算.wav文件的频谱图。为此,我按照可以在这里找到的说明进行操作。我首先使用librosa库读取.wav文件。链接中找到的代码能够正常工作。该代码如下:

sig, rate = librosa.load(file, sr = None)
sig = buf_to_int(sig, n_bytes=2)
spectrogram = sig2spec(rate, sig)

同时,函数sig2spec:

def sig2spec(signal, sample_rate):

# Read the file.
# sample_rate, signal = scipy.io.wavfile.read(filename)
# signal = signal[0:int(1.5 * sample_rate)]  # Keep the first 3.5 seconds
# plt.plot(signal)
# plt.show()

# Pre-emphasis step: Amplification of the high frequencies (HF)
# (1) balance the frequency spectrum since HF usually have smaller magnitudes compared to LF
# (2) avoid numerical problems during the Fourier transform operation and
# (3) may also improve the Signal-to-Noise Ratio (SNR).
pre_emphasis = 0.97
emphasized_signal = numpy.append(signal[0], signal[1:] - pre_emphasis * signal[:-1])
# plt.plot(emphasized_signal)
# plt.show()
# Consequently, we split the signal into short time windows. We can safely make the assumption that
# an audio signal is stationary over a small short period of time. Those windows size are balanced from the
# parameter called frame_size, while the overlap between consecutive windows is controlled from the
# variable frame_stride.

frame_size = 0.025
frame_stride = 0.01
frame_length, frame_step = frame_size * sample_rate, frame_stride * sample_rate  # Convert from seconds to samples
signal_length = len(emphasized_signal)
frame_length = int(round(frame_length))
frame_step = int(round(frame_step))
num_frames = int(numpy.ceil(float(numpy.abs(signal_length - frame_length)) / frame_step))
# Make sure that we have at least 1 frame

pad_signal_length = num_frames * frame_step + frame_length
z = numpy.zeros((pad_signal_length - signal_length))
pad_signal = numpy.append(emphasized_signal, z)
# Pad Signal to make sure that all frames have equal
# number of samples without truncating any samples from the original signal

indices = numpy.tile(numpy.arange(0, frame_length), (num_frames, 1)) \
          + numpy.tile(numpy.arange(0, num_frames * frame_step, frame_step), (frame_length, 1)).T

frames = pad_signal[indices.astype(numpy.int32, copy=False)]

# Apply hamming windows. The rationale behind that is  the assumption made by the FFT that the data
# is infinite and to reduce spectral leakage.
frames *= numpy.hamming(frame_length)

# Fourier-Transform and Power Spectrum
nfft = 2048
mag_frames = numpy.absolute(numpy.fft.rfft(frames, nfft))  # Magnitude of the FFT
pow_frames = ((1.0 / nfft) * (mag_frames ** 2))  # Power Spectrum

# Transform the FFT to MEL scale
nfilt = 40
low_freq_mel = 0
high_freq_mel = (2595 * numpy.log10(1 + (sample_rate / 2) / 700))  # Convert Hz to Mel
mel_points = numpy.linspace(low_freq_mel, high_freq_mel, nfilt + 2)  # Equally spaced in Mel scale
hz_points = (700 * (10 ** (mel_points / 2595) - 1))  # Convert Mel to Hz
bin = numpy.floor((nfft + 1) * hz_points / sample_rate)

fbank = numpy.zeros((nfilt, int(numpy.floor(nfft / 2 + 1))))
for m in range(1, nfilt + 1):
    f_m_minus = int(bin[m - 1])  # left
    f_m = int(bin[m])  # center
    f_m_plus = int(bin[m + 1])  # right

    for k in range(f_m_minus, f_m):
        fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1])
    for k in range(f_m, f_m_plus):
        fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m])
filter_banks = numpy.dot(pow_frames, fbank.T)
filter_banks = numpy.where(filter_banks == 0, numpy.finfo(float).eps, filter_banks)  # Numerical Stability
filter_banks = 20 * numpy.log10(filter_banks)  # dB

return (filter_banks/ np.amax(filter_banks))*255

我可以生成类似于以下图片的图像:

enter image description here

然而,在一些情况下,我的频谱图看起来像:

某些非常奇怪的事情正在发生,因为在信号的开始处有一些蓝色条纹出现在图像中,我不确定它们是否真的代表了什么或者在计算频谱图时出现了错误。我猜测这个问题与规范化有关,但我不确定具体是什么原因。

enter image description here

编辑:我尝试使用了库中推荐的librosa:

sig, rate = librosa.load("audio.wav", sr = None)
spectrogram = librosa.feature.melspectrogram(y=sig, sr=rate)
spec_shape = spectrogram.shape
fig = plt.figure(figsize=(spec_shape), dpi=5)
lidis.specshow(spectrogram.T, cmap=cm.jet)
plt.tight_layout()
plt.savefig("spec.jpg")

现在规范几乎到处都是深蓝色的:

enter image description here


除非你有某种原因要自己实现它,否则我建议使用 scipy.signal.spectrogram - user2699
@user2699 试图计算梅尔频谱图,因此该函数不会给出预期结果。这个librosa函数应该可以。你能运行melspectrogram并查看是否得到类似的结果吗? - Lukasz Tracewski
1
我对Librosa的问题在于我无法复制相同的颜色调色板。因此,我跳过了它。我可以尝试使用它,但更喜欢使用发布的代码。 - Jose Ramon
你是否尝试在这里提问:https://dsp.stackexchange.com/?他们可能会有更好的想法。 - Shir
4
这里有一本关于Python数字信号处理的免费优秀书籍... http://greenteapress.com/wp/think-dsp/ - Mark Setchell
显示剩余3条评论
1个回答

6
可能是因为您没有调整librosa melspectrogram方法的参数。
在您的原始实现中,您指定了nfft = 2048。这可以传递给melspectrogram,您将看到不同的结果。
本文介绍了“波形频率分辨率”和“fft分辨率”,这些是进行FT时重要的参数。了解它们可能有助于再现您的原始光谱图。

http://www.bitweenie.com/listings/fft-zero-padding/

`specshow`方法也有各种参数,它们会直接影响你所生成的图形。
这个堆栈帖子列出了MATLAB中的各种频谱图参数,但是你也可以在librosa版本中找到类似之处。 什么是频谱图,如何设置其参数?

我认为在 librosa melspectrogram 中默认值仍然是 2048。 - Jose Ramon

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接