Z80上的溢出和进位标志

28

我已经完成在我的Z80核心上实现ADD A,r一组操作码。我对进位和溢出标志有点困惑,但我想向社区请教以确认我的答案是否正确。

从我所看到的情况来看,Z80中的ALU并不关心有符号/无符号运算,它只是将比特加起来。这意味着如果两个8位值相加导致一个9位值,那么进位标志将被设置。这包括两个负的二进制补码数相加,例如-20(11101100)和-40(11011000),因为尽管结果为-60(11000100),但实际上的结果是一个9位值1 1100 0100。这肯定意味着,如果添加两个负的二进制补码值,则进位标志将始终被设置,即使没有溢出条件-我是对的吗?

其次,我决定通过异或操作来检测此指令中的溢出,我将异或操作数的第7位,并且如果结果为10000000,则肯定没有溢出-如果结果为00000000,则可能存在溢出条件,因此我会将加法结果的第7位与任一操作数的第7位进行异或操作,如果结果为10000000,则发生了溢出,我会设置P/V溢出标志。在这里我也是对的吗?

非常抱歉问题有点复杂,但我相当确定我的答案是正确的,但在基于此逻辑执行无数个指令之前,我需要确认一下。非常感谢。

2个回答

40
结果的位数来自于无符号整数的截断和。在这里,add指令不关心符号,也不关心您将整数解释为有符号或无符号。它只是像数字无符号一样进行相加。
进位标志(或在减法的情况下借位)是从8位无符号整数相加中得到的不存在的第9位。有效地,该标志表示了无符号整数的加/减溢出/下溢。同样,add在这里完全不关心符号,它只是像数字无符号一样进行相加。
两个负的二进制补码数相加会将进位标志设置为1,正确。
溢出标志显示了是否已经发生了有符号整数的加法/减法溢出/下溢。为了设置溢出标志,指令将数字视为有符号的(就像对于进位标志和结果的8位一样将它们视为无符号的)。
设置溢出标志背后的思想很简单。假设您将8位有符号整数扩展为9位,即只需将第7位复制到额外的第8位即可。如果这些9位有符号整数的9位和/差异在第7位和第8位具有不同的值,则会发生溢出/下溢,这意味着加法/减法在第7位中丢失了结果的符号,并将其用于结果的大小,或者换句话说,8位无法容纳符号位和如此大的大小。

现在,结果的第7位只有在进入第7位和进入第8位(=第7位的进位)不同时才能与虚拟符号位第8位不同。这是因为我们从加数开始,它们的第7位=第8位,并且只有不同的进位可以以不同的方式影响它们在结果中的位置。

所以溢出标志=进位输出标志XOR从第6位进入第7位的进位。

我的计算方法和你的计算方法都是正确的。实际上,在Z80 CPU用户手册的“Z80状态指示器标志”一节中,两种方法都有描述。

以下是如何在C语言中模拟大多数ADC指令的方法,其中您无法直接访问CPU的标志并且无法充分利用模拟CPU的ADC指令:

#include <stdio.h>
#include <limits.h>

#if CHAR_BIT != 8
#error char expected to have exactly 8 bits.
#endif

typedef unsigned char uint8;
typedef signed char int8;

#define FLAGS_CY_SHIFT 0
#define FLAGS_OV_SHIFT 1
#define FLAGS_CY_MASK  (1 << FLAGS_CY_SHIFT)
#define FLAGS_OV_MASK  (1 << FLAGS_OV_SHIFT)

void Adc(uint8* acc, uint8 b, uint8* flags)
{
  uint8 a = *acc;
  uint8 carryIns;
  uint8 carryOut;

  // Calculate the carry-out depending on the carry-in and addends.
  //
  // carry-in = 0: carry-out = 1 IFF (a + b > 0xFF) or,
  //   equivalently, but avoiding overflow in C: (a > 0xFF - b).
  //
  // carry-in = 1: carry-out = 1 IFF (a + b + 1 > 0xFF) or,
  //   equivalently, (a + b >= 0xFF) or,
  //   equivalently, but avoiding overflow in C: (a >= 0xFF - b).
  //
  // Also calculate the sum bits.
  if (*flags & FLAGS_CY_MASK)
  {
    carryOut = (a >= 0xFF - b);
    *acc = a + b + 1;
  }
  else
  {
    carryOut = (a > 0xFF - b);
    *acc = a + b;
  }

#if 0
  // Calculate the overflow by sign comparison.
  carryIns = ((a ^ b) ^ 0x80) & 0x80;
  if (carryIns) // if addend signs are the same
  {
    // overflow if the sum sign differs from the sign of either of addends
    carryIns = ((*acc ^ a) & 0x80) != 0;
  }
#else
  // Calculate all carry-ins.
  // Remembering that each bit of the sum =
  //   addend a's bit XOR addend b's bit XOR carry-in,
  // we can work out all carry-ins from a, b and their sum.
  carryIns = *acc ^ a ^ b;

  // Calculate the overflow using the carry-out and
  // most significant carry-in.
  carryIns = (carryIns >> 7) ^ carryOut;
#endif

  // Update flags.
  *flags &= ~(FLAGS_CY_MASK | FLAGS_OV_MASK);
  *flags |= (carryOut << FLAGS_CY_SHIFT) | (carryIns << FLAGS_OV_SHIFT);
}

void Sbb(uint8* acc, uint8 b, uint8* flags)
{
  // a - b - c = a + ~b + 1 - c = a + ~b + !c
  *flags ^= FLAGS_CY_MASK;
  Adc(acc, ~b, flags);
  *flags ^= FLAGS_CY_MASK;
}

const uint8 testData[] =
{
  0,
  1,
  0x7F,
  0x80,
  0x81,
  0xFF
};

int main(void)
{
  unsigned aidx, bidx, c;

  printf("ADC:\n");
  for (c = 0; c <= 1; c++)
    for (aidx = 0; aidx < sizeof(testData)/sizeof(testData[0]); aidx++)
      for (bidx = 0; bidx < sizeof(testData)/sizeof(testData[0]); bidx++)
      {
        uint8 a = testData[aidx];
        uint8 b = testData[bidx];
        uint8 flags = c << FLAGS_CY_SHIFT;
        printf("%3d(%4d) + %3d(%4d) + %u = ",
               a, (int8)a, b, (int8)b, c);
        Adc(&a, b, &flags);
        printf("%3d(%4d) CY=%d OV=%d\n",
               a, (int8)a, (flags & FLAGS_CY_MASK) != 0, (flags & FLAGS_OV_MASK) != 0);
      }

  printf("SBB:\n");
  for (c = 0; c <= 1; c++)
    for (aidx = 0; aidx < sizeof(testData)/sizeof(testData[0]); aidx++)
      for (bidx = 0; bidx < sizeof(testData)/sizeof(testData[0]); bidx++)
      {
        uint8 a = testData[aidx];
        uint8 b = testData[bidx];
        uint8 flags = c << FLAGS_CY_SHIFT;
        printf("%3d(%4d) - %3d(%4d) - %u = ",
               a, (int8)a, b, (int8)b, c);
        Sbb(&a, b, &flags);
        printf("%3d(%4d) CY=%d OV=%d\n",
               a, (int8)a, (flags & FLAGS_CY_MASK) != 0, (flags & FLAGS_OV_MASK) != 0);
      }

  return 0;
}

输出:

ADC:
  0(   0) +   0(   0) + 0 =   0(   0) CY=0 OV=0
  0(   0) +   1(   1) + 0 =   1(   1) CY=0 OV=0
  0(   0) + 127( 127) + 0 = 127( 127) CY=0 OV=0
  0(   0) + 128(-128) + 0 = 128(-128) CY=0 OV=0
  0(   0) + 129(-127) + 0 = 129(-127) CY=0 OV=0
  0(   0) + 255(  -1) + 0 = 255(  -1) CY=0 OV=0
  1(   1) +   0(   0) + 0 =   1(   1) CY=0 OV=0
  1(   1) +   1(   1) + 0 =   2(   2) CY=0 OV=0
  1(   1) + 127( 127) + 0 = 128(-128) CY=0 OV=1
  1(   1) + 128(-128) + 0 = 129(-127) CY=0 OV=0
  1(   1) + 129(-127) + 0 = 130(-126) CY=0 OV=0
  1(   1) + 255(  -1) + 0 =   0(   0) CY=1 OV=0
127( 127) +   0(   0) + 0 = 127( 127) CY=0 OV=0
127( 127) +   1(   1) + 0 = 128(-128) CY=0 OV=1
127( 127) + 127( 127) + 0 = 254(  -2) CY=0 OV=1
127( 127) + 128(-128) + 0 = 255(  -1) CY=0 OV=0
127( 127) + 129(-127) + 0 =   0(   0) CY=1 OV=0
127( 127) + 255(  -1) + 0 = 126( 126) CY=1 OV=0
128(-128) +   0(   0) + 0 = 128(-128) CY=0 OV=0
128(-128) +   1(   1) + 0 = 129(-127) CY=0 OV=0
128(-128) + 127( 127) + 0 = 255(  -1) CY=0 OV=0
128(-128) + 128(-128) + 0 =   0(   0) CY=1 OV=1
128(-128) + 129(-127) + 0 =   1(   1) CY=1 OV=1
128(-128) + 255(  -1) + 0 = 127( 127) CY=1 OV=1
129(-127) +   0(   0) + 0 = 129(-127) CY=0 OV=0
129(-127) +   1(   1) + 0 = 130(-126) CY=0 OV=0
129(-127) + 127( 127) + 0 =   0(   0) CY=1 OV=0
129(-127) + 128(-128) + 0 =   1(   1) CY=1 OV=1
129(-127) + 129(-127) + 0 =   2(   2) CY=1 OV=1
129(-127) + 255(  -1) + 0 = 128(-128) CY=1 OV=0
255(  -1) +   0(   0) + 0 = 255(  -1) CY=0 OV=0
255(  -1) +   1(   1) + 0 =   0(   0) CY=1 OV=0
255(  -1) + 127( 127) + 0 = 126( 126) CY=1 OV=0
255(  -1) + 128(-128) + 0 = 127( 127) CY=1 OV=1
255(  -1) + 129(-127) + 0 = 128(-128) CY=1 OV=0
255(  -1) + 255(  -1) + 0 = 254(  -2) CY=1 OV=0
  0(   0) +   0(   0) + 1 =   1(   1) CY=0 OV=0
  0(   0) +   1(   1) + 1 =   2(   2) CY=0 OV=0
  0(   0) + 127( 127) + 1 = 128(-128) CY=0 OV=1
  0(   0) + 128(-128) + 1 = 129(-127) CY=0 OV=0
  0(   0) + 129(-127) + 1 = 130(-126) CY=0 OV=0
  0(   0) + 255(  -1) + 1 =   0(   0) CY=1 OV=0
  1(   1) +   0(   0) + 1 =   2(   2) CY=0 OV=0
  1(   1) +   1(   1) + 1 =   3(   3) CY=0 OV=0
  1(   1) + 127( 127) + 1 = 129(-127) CY=0 OV=1
  1(   1) + 128(-128) + 1 = 130(-126) CY=0 OV=0
  1(   1) + 129(-127) + 1 = 131(-125) CY=0 OV=0
  1(   1) + 255(  -1) + 1 =   1(   1) CY=1 OV=0
127( 127) +   0(   0) + 1 = 128(-128) CY=0 OV=1
127( 127) +   1(   1) + 1 = 129(-127) CY=0 OV=1
127( 127) + 127( 127) + 1 = 255(  -1) CY=0 OV=1
127( 127) + 128(-128) + 1 =   0(   0) CY=1 OV=0
127( 127) + 129(-127) + 1 =   1(   1) CY=1 OV=0
127( 127) + 255(  -1) + 1 = 127( 127) CY=1 OV=0
128(-128) +   0(   0) + 1 = 129(-127) CY=0 OV=0
128(-128) +   1(   1) + 1 = 130(-126) CY=0 OV=0
128(-128) + 127( 127) + 1 =   0(   0) CY=1 OV=0
128(-128) + 128(-128) + 1 =   1(   1) CY=1 OV=1
128(-128) + 129(-127) + 1 =   2(   2) CY=1 OV=1
128(-128) + 255(  -1) + 1 = 128(-128) CY=1 OV=0
129(-127) +   0(   0) + 1 = 130(-126) CY=0 OV=0
129(-127) +   1(   1) + 1 = 131(-125) CY=0 OV=0
129(-127) + 127( 127) + 1 =   1(   1) CY=1 OV=0
129(-127) + 128(-128) + 1 =   2(   2) CY=1 OV=1
129(-127) + 129(-127) + 1 =   3(   3) CY=1 OV=1
129(-127) + 255(  -1) + 1 = 129(-127) CY=1 OV=0
255(  -1) +   0(   0) + 1 =   0(   0) CY=1 OV=0
255(  -1) +   1(   1) + 1 =   1(   1) CY=1 OV=0
255(  -1) + 127( 127) + 1 = 127( 127) CY=1 OV=0
255(  -1) + 128(-128) + 1 = 128(-128) CY=1 OV=0
255(  -1) + 129(-127) + 1 = 129(-127) CY=1 OV=0
255(  -1) + 255(  -1) + 1 = 255(  -1) CY=1 OV=0
SBB:
  0(   0) -   0(   0) - 0 =   0(   0) CY=0 OV=0
  0(   0) -   1(   1) - 0 = 255(  -1) CY=1 OV=0
  0(   0) - 127( 127) - 0 = 129(-127) CY=1 OV=0
  0(   0) - 128(-128) - 0 = 128(-128) CY=1 OV=1
  0(   0) - 129(-127) - 0 = 127( 127) CY=1 OV=0
  0(   0) - 255(  -1) - 0 =   1(   1) CY=1 OV=0
  1(   1) -   0(   0) - 0 =   1(   1) CY=0 OV=0
  1(   1) -   1(   1) - 0 =   0(   0) CY=0 OV=0
  1(   1) - 127( 127) - 0 = 130(-126) CY=1 OV=0
  1(   1) - 128(-128) - 0 = 129(-127) CY=1 OV=1
  1(   1) - 129(-127) - 0 = 128(-128) CY=1 OV=1
  1(   1) - 255(  -1) - 0 =   2(   2) CY=1 OV=0
127( 127) -   0(   0) - 0 = 127( 127) CY=0 OV=0
127( 127) -   1(   1) - 0 = 126( 126) CY=0 OV=0
127( 127) - 127( 127) - 0 =   0(   0) CY=0 OV=0
127( 127) - 128(-128) - 0 = 255(  -1) CY=1 OV=1
127( 127) - 129(-127) - 0 = 254(  -2) CY=1 OV=1
127( 127) - 255(  -1) - 0 = 128(-128) CY=1 OV=1
128(-128) -   0(   0) - 0 = 128(-128) CY=0 OV=0
128(-128) -   1(   1) - 0 = 127( 127) CY=0 OV=1
128(-128) - 127( 127) - 0 =   1(   1) CY=0 OV=1
128(-128) - 128(-128) - 0 =   0(   0) CY=0 OV=0
128(-128) - 129(-127) - 0 = 255(  -1) CY=1 OV=0
128(-128) - 255(  -1) - 0 = 129(-127) CY=1 OV=0
129(-127) -   0(   0) - 0 = 129(-127) CY=0 OV=0
129(-127) -   1(   1) - 0 = 128(-128) CY=0 OV=0
129(-127) - 127( 127) - 0 =   2(   2) CY=0 OV=1
129(-127) - 128(-128) - 0 =   1(   1) CY=0 OV=0
129(-127) - 129(-127) - 0 =   0(   0) CY=0 OV=0
129(-127) - 255(  -1) - 0 = 130(-126) CY=1 OV=0
255(  -1) -   0(   0) - 0 = 255(  -1) CY=0 OV=0
255(  -1) -   1(   1) - 0 = 254(  -2) CY=0 OV=0
255(  -1) - 127( 127) - 0 = 128(-128) CY=0 OV=0
255(  -1) - 128(-128) - 0 = 127( 127) CY=0 OV=0
255(  -1) - 129(-127) - 0 = 126( 126) CY=0 OV=0
255(  -1) - 255(  -1) - 0 =   0(   0) CY=0 OV=0
  0(   0) -   0(   0) - 1 = 255(  -1) CY=1 OV=0
  0(   0) -   1(   1) - 1 = 254(  -2) CY=1 OV=0
  0(   0) - 127( 127) - 1 = 128(-128) CY=1 OV=0
  0(   0) - 128(-128) - 1 = 127( 127) CY=1 OV=0
  0(   0) - 129(-127) - 1 = 126( 126) CY=1 OV=0
  0(   0) - 255(  -1) - 1 =   0(   0) CY=1 OV=0
  1(   1) -   0(   0) - 1 =   0(   0) CY=0 OV=0
  1(   1) -   1(   1) - 1 = 255(  -1) CY=1 OV=0
  1(   1) - 127( 127) - 1 = 129(-127) CY=1 OV=0
  1(   1) - 128(-128) - 1 = 128(-128) CY=1 OV=1
  1(   1) - 129(-127) - 1 = 127( 127) CY=1 OV=0
  1(   1) - 255(  -1) - 1 =   1(   1) CY=1 OV=0
127( 127) -   0(   0) - 1 = 126( 126) CY=0 OV=0
127( 127) -   1(   1) - 1 = 125( 125) CY=0 OV=0
127( 127) - 127( 127) - 1 = 255(  -1) CY=1 OV=0
127( 127) - 128(-128) - 1 = 254(  -2) CY=1 OV=1
127( 127) - 129(-127) - 1 = 253(  -3) CY=1 OV=1
127( 127) - 255(  -1) - 1 = 127( 127) CY=1 OV=0
128(-128) -   0(   0) - 1 = 127( 127) CY=0 OV=1
128(-128) -   1(   1) - 1 = 126( 126) CY=0 OV=1
128(-128) - 127( 127) - 1 =   0(   0) CY=0 OV=1
128(-128) - 128(-128) - 1 = 255(  -1) CY=1 OV=0
128(-128) - 129(-127) - 1 = 254(  -2) CY=1 OV=0
128(-128) - 255(  -1) - 1 = 128(-128) CY=1 OV=0
129(-127) -   0(   0) - 1 = 128(-128) CY=0 OV=0
129(-127) -   1(   1) - 1 = 127( 127) CY=0 OV=1
129(-127) - 127( 127) - 1 =   1(   1) CY=0 OV=1
129(-127) - 128(-128) - 1 =   0(   0) CY=0 OV=0
129(-127) - 129(-127) - 1 = 255(  -1) CY=1 OV=0
129(-127) - 255(  -1) - 1 = 129(-127) CY=1 OV=0
255(  -1) -   0(   0) - 1 = 254(  -2) CY=0 OV=0
255(  -1) -   1(   1) - 1 = 253(  -3) CY=0 OV=0
255(  -1) - 127( 127) - 1 = 127( 127) CY=0 OV=1
255(  -1) - 128(-128) - 1 = 126( 126) CY=0 OV=0
255(  -1) - 129(-127) - 1 = 125( 125) CY=0 OV=0
255(  -1) - 255(  -1) - 1 = 255(  -1) CY=1 OV=0

你可以将#if 0更改为#if 1,以使用基于符号比较的方法进行溢出计算。结果将是相同的。乍一看,基于符号的方法也能处理进位。
请注意,通过使用我的方法,在位0到7中计算所有进位值,您还可以免费获得所需的DAA指令的half-carry标志(从位3到位4的进位)的值。 编辑:我添加了一个带借位的减法函数(SBC/SBB指令)和其结果。

谢谢你的解释,非常精确。我通过执行 halfCarryOut = carryIn ? ((a & 0x0F) >= 0x0F - (a & 0x0F)) : ((a & 0x0F) > 0x0F - (a & 0x0F)); halfCarryOut = ((res ^ a ^ b) >> 4) ^ halfCarryOut; 找到了半进位标志,应该是正确的。 - Jack
2
@Jack 如果你已经测试过并且它可以工作,那就好(我不会再验证它了)。但是,如我在答案末尾所示,它可以更简单地完成。请使用 #else 和 #endif 之间的代码变体。在 carryIns = *acc ^ a ^ b; 之后添加 halfCarryOut = (carryIns >> 4) & 1;,这就是你需要添加的全部内容。 - Alexey Frunze
@Garry 255+1+0=0 在 CF 中会产生无符号溢出,但在 OF 中不会产生有符号溢出,因为当作为有符号数解释时,它实际上是 -1+1+0=0,所以没有什么可以溢出的。 - Alexey Frunze
1
对于那些正在实现GAMEBOY Z80的人:我只是想把我的测试结果添加到这里。在Z80的Gameboy版本中,255+1操作将会生成半进位标志和进位标志。 - steveg89
借位和半借位有什么技巧吗? - Patrick
显示剩余3条评论

10
另一种更易理解的方法是,在执行求和操作时:
  • 符号位(Sign)始终设置为结果的第7位
  • 零标志位(Zero)如果结果为0x00,则设置为1
  • 半进位标志位(Half-carry)在操作数右半字节的求和溢出时设置
  • 溢出标志位(Overflow)当两个带符号操作数都为正且带符号求和为负,或者两个带符号操作数都为负且带符号求和为正时设置
  • 加/减标志位(Add/Sub)被重置
  • 进位标志位(Carry)如果无符号求和溢出了0xFF,则设置为1

2
很好的回顾。再进一步澄清一下:“Add/Sub被重置”,因为如果上一个操作是减法,那么N只会被显式地设置。(我认为这仅用于DAA指令。) - Jongware
“bit 7”是什么意思?从0开始,倒数第7位吗? - Evgenia Karunus

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接