立方体到全景投影算法

6
我是一个有用的助手,可以为您翻译文本。
我有一个立方体贴图纹理,它定义了周围的环境,但我需要将其传递给一个仅使用纬度/经度贴图的程序。我真的很困惑如何进行转换。这里有什么帮助吗?
换句话说,我需要从这里开始:

enter image description here

对于这个(我认为该图像还有一个额外的-90°绕x轴旋转):

enter image description here

更新: 我已经获得了投影的官方名称。顺便说一下,我在这里找到了相反的投影here

5个回答

8
一般投影光栅图像的步骤如下:
for each pixel of the destination image:
    calculate the corresponding unit vector in 3-dimensional space
    calculate the x,y coordinate for that vector in the source image
    sample the source image at that coordinate and assign the value to the destination pixel

最后一步就是插值。我们将着重讨论其他两个步骤。

给定纬度和经度的单位向量为(+z指向北极,+x指向本初子午线):

x = cos(lat)*cos(lon)
y = cos(lat)*sin(lon)
z = sin(lat)

假设这个立方体是以原点为中心,周围+/-1单位长度的(即整体大小为2x2x2)。 一旦我们得到了单位向量,就可以通过查找绝对值最大的元素来确定它所在的立方体面。例如,如果我们的单位向量是<0.2099,-0.7289,0.6516>,那么y元素具有最大的绝对值。它是负数,因此该点将位于立方体的-y面上。通过将其他两个坐标除以y幅度对其进行归一化,以获得该面内的位置。因此,在-y面上,该点将位于x = 0.2879,z = 0.8939处。

2
我想分享一下我对此转换的MATLAB实现。我还参考了OpenGL 4.1规范第3.8.10章节(在这里找到)以及Paul Bourke的网站(在这里找到)。确保您查看子标题:将6个立方体环境贴图和一个球形贴图相互转换
我还受到上面Sambatyon帖子的启发。它最初是从Python移植到MATLAB,但我使代码完全矢量化(即没有for循环)。我还将立方体图像分成了6个单独的图像,因为我正在构建的应用程序中立方体图像是以这种格式呈现的。此外,代码中没有错误检查,并且假定所有立方体图像都具有相同的大小(n x n)。这也假设图像是以RGB格式呈现的。如果您想为单色图像执行此操作,只需注释掉需要访问多个通道的那些代码行即可。我们开始吧!
function [out] = cubic2equi(top, bottom, left, right, front, back)

% Height and width of equirectangular image
height = size(top, 1);
width = 2*height;

% Flags to denote what side of the cube we are facing
% Z-axis is coming out towards you
% X-axis is going out to the right
% Y-axis is going upwards
% Assuming that the front of the cube is towards the
% negative X-axis
FACE_Z_POS = 1; % Left
FACE_Z_NEG = 2; % Right
FACE_Y_POS = 3; % Top
FACE_Y_NEG = 4; % Bottom
FACE_X_NEG = 5; % Front 
FACE_X_POS = 6; % Back

% Place in a cell array
stackedImages{FACE_Z_POS} = left;
stackedImages{FACE_Z_NEG} = right;
stackedImages{FACE_Y_POS} = top;
stackedImages{FACE_Y_NEG} = bottom;
stackedImages{FACE_X_NEG} = front;
stackedImages{FACE_X_POS} = back;

% Place in 3 3D matrices - Each matrix corresponds to a colour channel
imagesRed = uint8(zeros(height, height, 6));
imagesGreen = uint8(zeros(height, height, 6));
imagesBlue = uint8(zeros(height, height, 6));

% Place each channel into their corresponding matrices
for i = 1 : 6
    im = stackedImages{i};
    imagesRed(:,:,i) = im(:,:,1);
    imagesGreen(:,:,i) = im(:,:,2);
    imagesBlue(:,:,i) = im(:,:,3);
end

% For each co-ordinate in the normalized image...
[X, Y] = meshgrid(1:width, 1:height);

% Obtain the spherical co-ordinates
Y = 2*Y/height - 1;
X = 2*X/width - 1;
sphereTheta = X*pi;
spherePhi = (pi/2)*Y;

texX = cos(spherePhi).*cos(sphereTheta);
texY = sin(spherePhi);
texZ = cos(spherePhi).*sin(sphereTheta);

% Figure out which face we are facing for each co-ordinate
% First figure out the greatest absolute magnitude for each point
comp = cat(3, texX, texY, texZ);
[~,ind] = max(abs(comp), [], 3);
maxVal = zeros(size(ind));
% Copy those values - signs and all
maxVal(ind == 1) = texX(ind == 1);
maxVal(ind == 2) = texY(ind == 2);
maxVal(ind == 3) = texZ(ind == 3);

% Set each location in our equirectangular image, figure out which
% side we are facing
getFace = -1*ones(size(maxVal));

% Back
ind = abs(maxVal - texX) < 0.00001 & texX < 0;
getFace(ind) = FACE_X_POS;

% Front
ind = abs(maxVal - texX) < 0.00001 & texX >= 0;
getFace(ind) = FACE_X_NEG;

% Top
ind = abs(maxVal - texY) < 0.00001 & texY < 0;
getFace(ind) = FACE_Y_POS;

% Bottom
ind = abs(maxVal - texY) < 0.00001 & texY >= 0;
getFace(ind) = FACE_Y_NEG;

% Left
ind = abs(maxVal - texZ) < 0.00001 & texZ < 0;
getFace(ind) = FACE_Z_POS;

% Right
ind = abs(maxVal - texZ) < 0.00001 & texZ >= 0;
getFace(ind) = FACE_Z_NEG;

% Determine the co-ordinates along which image to sample
% based on which side we are facing
rawX = -1*ones(size(maxVal));
rawY = rawX;
rawZ = rawX;

% Back
ind = getFace == FACE_X_POS;
rawX(ind) = -texZ(ind);
rawY(ind) = texY(ind);
rawZ(ind) = texX(ind);

% Front
ind = getFace == FACE_X_NEG;
rawX(ind) = texZ(ind);
rawY(ind) = texY(ind);
rawZ(ind) = texX(ind);

% Top
ind = getFace == FACE_Y_POS;
rawX(ind) = texZ(ind);
rawY(ind) = texX(ind);
rawZ(ind) = texY(ind);

% Bottom
ind = getFace == FACE_Y_NEG;
rawX(ind) = texZ(ind);
rawY(ind) = -texX(ind);
rawZ(ind) = texY(ind);

% Left
ind = getFace == FACE_Z_POS;
rawX(ind) = texX(ind);
rawY(ind) = texY(ind);
rawZ(ind) = texZ(ind);

% Right
ind = getFace == FACE_Z_NEG;
rawX(ind) = -texX(ind);
rawY(ind) = texY(ind);
rawZ(ind) = texZ(ind);

% Concatenate all for later
rawCoords = cat(3, rawX, rawY, rawZ);

% Finally determine co-ordinates (normalized)
cubeCoordsX = ((rawCoords(:,:,1) ./ abs(rawCoords(:,:,3))) + 1) / 2;
cubeCoordsY = ((rawCoords(:,:,2) ./ abs(rawCoords(:,:,3))) + 1) / 2;
cubeCoords = cat(3, cubeCoordsX, cubeCoordsY);

% Now obtain where we need to sample the image
normalizedX = round(cubeCoords(:,:,1) * height);
normalizedY = round(cubeCoords(:,:,2) * height);

% Just in case.... cap between [1, height] to ensure
% no out of bounds behaviour
normalizedX(normalizedX < 1) = 1;
normalizedX(normalizedX > height) = height;
normalizedY(normalizedY < 1) = 1;
normalizedY(normalizedY > height) = height;

% Place into a stacked matrix
normalizedCoords = cat(3, normalizedX, normalizedY);

% Output image allocation
out = uint8(zeros([size(maxVal) 3]));

% Obtain column-major indices on where to sample from the
% input images
% getFace will contain which image we need to sample from
% based on the co-ordinates within the equirectangular image
ind = sub2ind([height height 6], normalizedCoords(:,:,2), ...
    normalizedCoords(:,:,1), getFace);

% Do this for each channel
out(:,:,1) = imagesRed(ind);
out(:,:,2) = imagesGreen(ind);
out(:,:,3) = imagesBlue(ind);

我还通过github公开了代码,您可以在这里找到它。包括主要的转换脚本、一个用来展示其使用的测试脚本以及从Paul Bourke的网站上获取的一组6个立方图像样本。希望这对您有用!


2
项目更名为libcub2cyl。同样的优点,提供了更好的C和C++工作示例。
现在也可用C语言。
我碰巧解决了你描述的完全相同的问题。
我写了这个小型的 C++ 库叫做 "Cube2Cyl",你可以在这里找到算法的详细解释:Cube2Cyl 请从 github 找到源代码:Cube2Cyl 它是根据 MIT 许可证发布的,可以免费使用!

不错的库,但我在 macOS 上无法构建它,或者可能是我没有理解它,它是否像另一个 CLI 一样工作? https://github.com/perthcpe23/cube-to-equirectangular - Rodrigo Polo

1

所以,我找到了一个解决方案,混合使用维基百科上的球面坐标this article和OpenGL 4.1规范的第3.8.10节(加上一些技巧使其正常工作)。因此,假设立方体图像的高度为h_o,宽度为w_o,则等距投影将具有高度h = w_o / 3和宽度w = 2 * h。现在,对于等距投影中的每个像素(x, y) 0 <= x <= w, 0 <= y <= h,我们想要找到相应的立方体投影像素,我使用以下Python代码解决了这个问题(希望我在从C语言翻译时没有犯错)。

import math

# from wikipedia
def spherical_coordinates(x, y):
    return (math.pi*((y/h) - 0.5), 2*math.pi*x/(2*h), 1.0)

# from wikipedia
def texture_coordinates(theta, phi, rho):
    return (rho * math.sin(theta) * math.cos(phi),
            rho * math.sin(theta) * math.sin(phi),
            rho * math.cos(theta))

FACE_X_POS = 0
FACE_X_NEG = 1
FACE_Y_POS = 2
FACE_Y_NEG = 3
FACE_Z_POS = 4
FACE_Z_NEG = 5

# from opengl specification
def get_face(x, y, z):
    largest_magnitude = max(x, y, z)
    if largest_magnitude - abs(x) < 0.00001:
        return FACE_X_POS if x < 0 else FACE_X_NEG
    elif largest_magnitude - abs(y) < 0.00001:
        return FACE_Y_POS if y < 0 else FACE_Y_NEG
    elif largest_magnitude - abs(z) < 0.00001:
        return FACE_Z_POS if z < 0 else FACE_Z_NEG

# from opengl specification
def raw_face_coordinates(face, x, y, z):
    if face == FACE_X_POS:
        return (-z, -y, x)
    elif face == FACE_X_NEG:
        return (-z, y, -x)
    elif face == FACE_Y_POS:
        return (-x, -z, -y)
    elif face == FACE_Y_NEG:
        return (-x, z, -y)
    elif face == FACE_Z_POS:
        return (-x, y, -z)
    elif face == FACE_Z_NEG:
        return (-x, -y, z)

# computes the topmost leftmost coordinate of the face in the cube map
def face_origin_coordinates(face):
    if face == FACE_X_POS:
        return (2*h, h)
    elif face == FACE_X_NEG:
        return (0, 2*h)
    elif face == FACE_Y_POS:
        return (h, h)
    elif face == FACE_Y_NEG:
        return (h, 3*h)
    elif face == FACE_Z_POS:
        return (h, 0)
    elif face == FACE_Z_NEG:
        return (h, 2*h)

# from opengl specification
def raw_coordinates(xc, yc, ma):
    return ((xc/abs(ma) + 1) / 2, (yc/abs(ma) + 1) / 2)


def normalized_coordinates(face, x, y):
    face_coords = face_origin_coordinates(face)
    normalized_x = int(math.floor(x * h + 0.5))
    normalized_y = int(math.floor(y * h + 0.5))
    # eliminates black pixels
    if normalized_x == h:
      --normalized_x
    if normalized_y == h:
      --normalized_y
    return (face_coords[0] + normalized_x, face_coords[1] + normalized_y)

def find_corresponding_pixel(x, y):
    spherical = spherical_coordinates(x, y)
    texture_coords = texture_coordinates(spherical[0], spherical[1], spherical[2])
    face = get_face(texture_coords[0], texture_coords[1], texture_coords[2])

    raw_face_coords = raw_face_coordinates(face, texture_coords[0], texture_coords[1], texture_coords[2])
    cube_coords = raw_coordinates(raw_face_coords[0], raw_face_coords[1], raw_face_coords[2])
    # this fixes some faces being rotated 90°
    if face in [FACE_X_NEG, FACE_X_POS]:
      cube_coords = (cube_coords[1], cube_coords[0])
    return normalized_coordinates(face, cube_coords[0], cube_coords[1])    

最后,我们只需为等距投影中的每个像素调用find_corresponding_pixel函数。

0

我认为从你在Python中的算法来看,你可能在计算theta和phi时颠倒了x和y。

def spherical_coordinates(x, y):
    return (math.pi*((y/h) - 0.5), 2*math.pi*x/(2*h), 1.0)

来自Paul Bourke的网站这里

theta = x pi phi = y pi / 2

在你的代码中,你在theta计算中使用了y,在phi计算中使用了x。

如果我错了,请纠正我。


你能帮我理解为什么在你的代码中寻找(x,y,z)的公式与使用维基百科页面和Paul Bourke的公式不同吗? 哪一个才是正确的? - Jean

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接