在OpenCL中快速进行RGB到YUV的转换

5
我知道下面的公式可以用来将RGB图像转换为YUV图像。在下面的公式中,R、G、B、Y、U、V都是8位无符号整数,中间值是16位无符号整数。
Y = ( (  66 * R + 129 * G +  25 * B + 128) >> 8) +  16  
U = ( ( -38 * R -  74 * G + 112 * B + 128) >> 8) + 128  
V = ( ( 112 * R -  94 * G -  18 * B + 128) >> 8) + 128

但是当这个公式用于OpenCL时,情况就不同了。
1. 8位内存写入访问是可选扩展,这意味着某些OpenCL实现可能不支持它。
2. 即使上述扩展被支持,与32位写入访问相比,速度极慢。

为了获得更好的性能,每4个像素将同时处理,因此输入是12个8位整数,输出是3个32位无符号整数(第一个代表4个Y样本,第二个代表4个U样本,最后一个代表4个V样本)。

我的问题是如何直接从这12个8位整数中获取这3个32位整数?是否有一个公式可以得到这3个32位整数,或者我只需要使用旧的公式得到12个8位整数的结果(4个Y,4个U,4个V),然后通过按位操作构造3个32位整数?

3个回答

10

虽然这个问题是2年前提出的,但我认为一些可工作的代码能帮助解决它。就最初关于直接访问8位值时性能不佳的担忧而言,尽可能进行32位直接访问会更好。

我之前开发并使用了以下OpenCL内核,将ARGB(典型的Windows位图像素布局)转换为y平面(全尺寸)、u/v半平面(四分之一尺寸)的内存布局,作为libx264编码的输入。

__kernel void ARGB2YUV ( 
                            __global  unsigned int * sourceImage,
                            __global unsigned int * destImage,
            unsigned int srcHeight,
            unsigned int srcWidth,
            unsigned int yuvStride // must be srcWidth/4 since we pack 4 pixels into 1 Y-unit (with 4 y-pixels)
            )
{
    int i,j;
    unsigned int RGBs [ 4 ];
    unsigned int posSrc, RGB, Value4 = 0, Value, yuvStrideHalf, srcHeightHalf, yPlaneOffset, posOffset;
    unsigned char red, green, blue;

    unsigned int posX = get_global_id(0);
    unsigned int posY = get_global_id(1);

    if ( posX < yuvStride ) {
        // Y plane - pack 4 y's within each work item
        if ( posY >= srcHeight )
            return;

        posSrc = (posY * srcWidth) + (posX * 4);

        RGBs [ 0 ] = sourceImage [ posSrc ];
        RGBs [ 1 ] = sourceImage [ posSrc + 1 ];
        RGBs [ 2 ] = sourceImage [ posSrc + 2 ];
        RGBs [ 3 ] = sourceImage [ posSrc + 3 ];

        for ( i=0; i<4; i++ ) {
            RGB = RGBs [ i ];

            blue = RGB & 0xff; green = (RGB >> 8) & 0xff; red = (RGB >> 16) & 0xff;

            Value = ( ( 66 * red + 129 * green + 25 * blue ) >> 8 ) + 16;
            Value4 |= (Value << (i * 8));
        }

        destImage [ (posY * yuvStride) + posX ] = Value4;
        return;
    }

    posX -= yuvStride;
    yuvStrideHalf = yuvStride >> 1;

    // U plane - pack 4 u's within each work item
    if ( posX >= yuvStrideHalf )
        return;

    srcHeightHalf = srcHeight >> 1; 
    if ( posY < srcHeightHalf ) {
        posSrc = ((posY * 2) * srcWidth) + (posX * 8);

        RGBs [ 0 ] = sourceImage [ posSrc ];
        RGBs [ 1 ] = sourceImage [ posSrc + 2 ];
        RGBs [ 2 ] = sourceImage [ posSrc + 4 ];
        RGBs [ 3 ] = sourceImage [ posSrc + 6 ];

        for ( i=0; i<4; i++ ) {
            RGB = RGBs [ i ];

            blue = RGB & 0xff; green = (RGB >> 8) & 0xff; red = (RGB >> 16) & 0xff;
            Value = ( ( -38 * red + -74 * green + 112 * blue ) >> 8 ) + 128;
            Value4 |= (Value << (i * 8));
        }
        yPlaneOffset = yuvStride * srcHeight;
        posOffset = (posY * yuvStrideHalf) + posX;
        destImage [ yPlaneOffset + posOffset ] = Value4;
        return;
    }

    posY -= srcHeightHalf;
    if ( posY >= srcHeightHalf )
        return;

    // V plane - pack 4 v's within each work item
    posSrc = ((posY * 2) * srcWidth) + (posX * 8);

    RGBs [ 0 ] = sourceImage [ posSrc ];
    RGBs [ 1 ] = sourceImage [ posSrc + 2 ];
    RGBs [ 2 ] = sourceImage [ posSrc + 4 ];
    RGBs [ 3 ] = sourceImage [ posSrc + 6 ];

    for ( i=0; i<4; i++ ) {
        RGB = RGBs [ i ];

        blue = RGB & 0xff; green = (RGB >> 8) & 0xff; red = (RGB >> 16) & 0xff;

        Value = ( ( 112 * red + -94 * green + -18 * blue ) >> 8 ) + 128;
        Value4 |= (Value << (i * 8));
    }

    yPlaneOffset = yuvStride * srcHeight;
    posOffset = (posY * yuvStrideHalf) + posX;

    destImage [ yPlaneOffset + (yPlaneOffset >> 2) + posOffset ] = Value4;
    return;
}

这段代码仅执行全局32位内存访问,而8位处理发生在每个工作项内部。

哦..适当的代码来调用内核

unsigned int width = 1024;
unsigned int height = 768;

unsigned int frameSize = width * height;
const unsigned int argbSize = frameSize * 4; // ARGB pixels

const unsigned int yuvSize = frameSize + (frameSize >> 1); // Y,U,V planes

const unsigned int yuvStride = width >> 2; // since we pack 4 RGBs into "one" YYYY

// Allocates ARGB buffer
ocl_rgb_buffer = clCreateBuffer ( context, CL_MEM_READ_WRITE, argbSize, 0, &error );
// ... error handling ...

ocl_yuv_buffer = clCreateBuffer ( context, CL_MEM_READ_WRITE, yuvSize, 0, &error );
// ... error handling ...

error = clSetKernelArg  ( kernel, 0, sizeof(cl_mem), &ocl_rgb_buffer );
error |= clSetKernelArg ( kernel, 1, sizeof(cl_mem), &ocl_yuv_buffer );

error |= clSetKernelArg ( kernel, 2, sizeof(unsigned int), &height);
error |= clSetKernelArg ( kernel, 3, sizeof(unsigned int), &width);

error |= clSetKernelArg ( kernel, 4, sizeof(unsigned int), &yuvStride);
// ... error handling ...

const size_t local_ws[] = { 16, 16 };
const size_t global_ws[] = { yuvStride + (yuvStride >> 1), height };

error = clEnqueueNDRangeKernel ( queue, kernel, 2, NULL, global_ws, local_ws, 0, NULL, NULL );
// ... error handling ...
注意:查看工作项计算。一些附加代码需要添加(例如使用模运算以添加足够的备用项),以确保工作项大小适合本地工作组大小。

注意:查看工作项计算。一些附加代码需要添加(例如使用模运算以添加足够的备用项),以确保工作项大小适合本地工作组大小。


2

像这样?除非您的平台可以使用int3,否则请使用int4。此外,您可以将5个像素打包到int16中,这样您浪费的内存带宽只有1/16而不是1/4。

__kernel void rgb2yuv( __global int3* input, __global int3* output){


rgb = input[get_global_id(0)];
R = rgb.x;
G = rgb.y;
B = rgb.z;    

yuv.x = ( (  66 * R + 129 * G +  25 * B + 128) >> 8) +  16; 
yuv.y = ( ( -38 * R -  74 * G + 112 * B + 128) >> 8) + 128; 
yuv.z = ( ( 112 * R -  94 * G -  18 * B + 128) >> 8) + 128;

output[get_global_id(0)] = yuv;
}

2

随着OpenCL规范的发布,数据类型int3不存在。

第123页:

n的支持值为2、4、8和16...

在你的内核变量rgb、R、G、B和yuv中,应至少为__private int4

OpenCL 1.1添加了对typen的支持,其中n = 3。但我强烈建议不要使用它。不同的供应商实现存在不同的错误,并且它并没有节省任何东西。


网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接