如何并行化Spark Scala计算?

6

我有一段编程代码,用于计算聚类后的集合平方误差和,这段代码大部分是从Spark mllib源代码中获取的。

当我使用Spark API运行类似的代码时,它会在许多不同的(分布式)作业中运行,并成功完成。但是当我运行自己的代码(应该与Spark代码执行相同的操作)时,我会遇到堆栈溢出错误。有什么想法吗?

以下是代码:

import java.util.Arrays
        import org.apache.spark.mllib.linalg.{Vectors, Vector}
        import org.apache.spark.mllib.linalg._
        import org.apache.spark.mllib.linalg.distributed.RowMatrix
        import org.apache.spark.rdd.RDD
        import org.apache.spark.api.java.JavaRDD
        import breeze.linalg.{axpy => brzAxpy, inv, svd => brzSvd, DenseMatrix => BDM, DenseVector => BDV,
          MatrixSingularException, SparseVector => BSV, CSCMatrix => BSM, Matrix => BM}

        val EPSILON = {
            var eps = 1.0
            while ((1.0 + (eps / 2.0)) != 1.0) {
              eps /= 2.0
            }
            eps
          }

        def dot(x: Vector, y: Vector): Double = {
            require(x.size == y.size,
              "BLAS.dot(x: Vector, y:Vector) was given Vectors with non-matching sizes:" +
              " x.size = " + x.size + ", y.size = " + y.size)
            (x, y) match {
              case (dx: DenseVector, dy: DenseVector) =>
                dot(dx, dy)
              case (sx: SparseVector, dy: DenseVector) =>
                dot(sx, dy)
              case (dx: DenseVector, sy: SparseVector) =>
                dot(sy, dx)
              case (sx: SparseVector, sy: SparseVector) =>
                dot(sx, sy)
              case _ =>
                throw new IllegalArgumentException(s"dot doesn't support (${x.getClass}, ${y.getClass}).")
            }
         }

         def fastSquaredDistance(
              v1: Vector,
              norm1: Double,
              v2: Vector,
              norm2: Double,
              precision: Double = 1e-6): Double = {
            val n = v1.size
            require(v2.size == n)
            require(norm1 >= 0.0 && norm2 >= 0.0)
            val sumSquaredNorm = norm1 * norm1 + norm2 * norm2
            val normDiff = norm1 - norm2
            var sqDist = 0.0
            /*
             * The relative error is
             * <pre>
             * EPSILON * ( \|a\|_2^2 + \|b\\_2^2 + 2 |a^T b|) / ( \|a - b\|_2^2 ),
             * </pre>
             * which is bounded by
             * <pre>
             * 2.0 * EPSILON * ( \|a\|_2^2 + \|b\|_2^2 ) / ( (\|a\|_2 - \|b\|_2)^2 ).
             * </pre>
             * The bound doesn't need the inner product, so we can use it as a sufficient condition to
             * check quickly whether the inner product approach is accurate.
             */
            val precisionBound1 = 2.0 * EPSILON * sumSquaredNorm / (normDiff * normDiff + EPSILON)
            if (precisionBound1 < precision) {
              sqDist = sumSquaredNorm - 2.0 * dot(v1, v2)
            } else if (v1.isInstanceOf[SparseVector] || v2.isInstanceOf[SparseVector]) {
              val dotValue = dot(v1, v2)
              sqDist = math.max(sumSquaredNorm - 2.0 * dotValue, 0.0)
              val precisionBound2 = EPSILON * (sumSquaredNorm + 2.0 * math.abs(dotValue)) /
                (sqDist + EPSILON)
              if (precisionBound2 > precision) {
                sqDist = Vectors.sqdist(v1, v2)
              }
            } else {
              sqDist = Vectors.sqdist(v1, v2)
            }
            sqDist
        }

        def findClosest(
              centers: TraversableOnce[Vector],
              point: Vector): (Int, Double) = {
            var bestDistance = Double.PositiveInfinity
            var bestIndex = 0
            var i = 0
            centers.foreach { center =>
              // Since `\|a - b\| \geq |\|a\| - \|b\||`, we can use this lower bound to avoid unnecessary
              // distance computation.
              var lowerBoundOfSqDist = Vectors.norm(center, 2.0) - Vectors.norm(point, 2.0)
              lowerBoundOfSqDist = lowerBoundOfSqDist * lowerBoundOfSqDist
              if (lowerBoundOfSqDist < bestDistance) {
                val distance: Double = fastSquaredDistance(center, Vectors.norm(center, 2.0), point, Vectors.norm(point, 2.0))
                if (distance < bestDistance) {
                  bestDistance = distance
                  bestIndex = i
                }
              }
              i += 1
            }
            (bestIndex, bestDistance)
        }

         def pointCost(
              centers: TraversableOnce[Vector],
              point: Vector): Double =
            findClosest(centers, point)._2



        def clusterCentersIter: Iterable[Vector] =
            clusterCenters.map(p => p)


        def computeCostZep(indata: RDD[Vector]): Double = {
            val bcCenters = indata.context.broadcast(clusterCenters)
            indata.map(p => pointCost(bcCenters.value, p)).sum()
          }

        computeCostZep(projectedData)

我相信我正在使用与Spark相同的所有并行化作业,但它对我没有用。任何关于使我的代码分布式/帮助查看为什么内存溢出发生在我的代码中的建议都将非常有帮助。

这是一个与Spark非常相似的源代码链接:KMeansModelKMeans

这是可以正常运行的代码:

val clusters = KMeans.train(projectedData, numClusters, numIterations)

val clusterCenters = clusters.clusterCenters




// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(projectedData)
println("Within Set Sum of Squared Errors = " + WSSSE)

这是错误输出:

org.apache.spark.SparkException:由于阶段失败而中止作业:第94.0阶段中的任务1失败了4次,最近的失败是:在第94.0阶段中丢失任务1.3(TID 37663,ip-172-31-13-209.ec2.internal):java.lang.StackOverflowError at $ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$$$ $ c57ec8bf9b0d5f6161b97741d596ff0 $ $$$ wC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC.dot(:226)at $ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$$$ $ c57ec8bf9b0d5f6161b97741d596ff0 $ $$$ wC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC.dot(:226)

之后:

驱动程序堆栈跟踪:在org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)处失败作业和独立阶段,在org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)处中止阶段,在scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)处进行可变数组遍历, 在org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)处中止阶段, 在org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)处处理任务集失败, 在org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)处接收到DAGScheduler事件处理循环的消息, 在org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)处运行事件循环, 在org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)处运行作业,在org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)处运行SparkContext作业,在org.apache.spark.rdd.RDD$$anonfun$fold$1.apply(RDD.scala:1088)处应用RDD fold操作,在org.apache.spark.rdd.DoubleRDDFunctions$$anonfun$sum$1.apply$mcD$sp(DoubleRDDFunctions.scala:34)处应用DoubleRDDFunctions sum操作


我刚刚编辑了我的原始问题。它展示了使用KMeansModel.computeCost方法运行的代码,没有任何问题。当我说“我的”时,我的意思是上面发布的那段代码。 - user3494047
你在哪里遇到了堆栈溢出? - nairbv
RDD是Spark的并行/分布式抽象/数据结构。Vectors和DenseVectors只是本地向量数据结构。如果您想要并行处理,应该将它们包装在RDD中。 - Ehsan M. Kermani
@Brian,我不确定。我发布了错误输出,但是我不确定如何从中判断溢出发生的位置。我只确定它在编译代码后发生。 - user3494047
@EhsanM.Kermani,我没有这样做吗?代码中唯一一个未在RDD中包装的向量是pointCost和findClosest,而该向量列表长度为5(这是KMeans找到的质心,设置为5)。 - user3494047
@Brian 我继续往下查找,发现堆栈跟踪显示它正在尝试在我的computeCostZap方法中运行sum()方法。 - user3494047
1个回答

4

在这里,正在递归调用dot方法,似乎很简单明了。

def dot(x: Vector, y: Vector): Double = {
        require(x.size == y.size,
          "BLAS.dot(x: Vector, y:Vector) was given Vectors with non-matching sizes:" +
          " x.size = " + x.size + ", y.size = " + y.size)
        (x, y) match {
          case (dx: DenseVector, dy: DenseVector) =>
            dot(dx, dy)
          case (sx: SparseVector, dy: DenseVector) =>
            dot(sx, dy)
          case (dx: DenseVector, sy: SparseVector) =>
            dot(sy, dx)
          case (sx: SparseVector, sy: SparseVector) =>
            dot(sx, sy)
          case _ =>
            throw new IllegalArgumentException(s"dot doesn't support (${x.getClass}, ${y.getClass}).")
        }
     }

递归调用dot方法时使用的参数与之前相同 - 因此递归永远没有结束的结论。

堆栈跟踪也告诉您这一点 - 请注意位置在dot方法处:

java.lang.StackOverflowError在$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$$$$$c57ec8bf9b0d5f6161b97741d596ff0$$$$wC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.iwC.dot(:226) at


网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接