std::function是如何实现的?

122
根据我找到的资料,一个lambda表达式本质上是由编译器创建一个带有重载函数调用运算符和引用变量作为成员的类来实现的。这意味着lambda表达式的大小是不固定的,如果引用变量足够多,那么大小可以是任意大。
一个std::function应该有一个固定的大小,但它必须能够包装任何类型的可调用对象,包括相同类型的任何lambda表达式。它是如何实现的呢?如果std::function在内部使用指向目标的指针,那么当std::function实例被复制或移动时会发生什么?是否涉及任何堆分配?

2
我之前研究过gcc/stdlib中std::function的实现。它本质上是一个多态对象的句柄类。内部基类的派生类被创建来保存参数,分配在堆上 - 然后指向这个派生类的指针作为std::function的子对象被保留。我相信它使用像std::shared_ptr一样的引用计数来处理复制和移动。 - Andrew Tomazos
4
请注意,实现可能使用特殊技巧(魔法),即依赖于编译器的扩展功能,而这些扩展功能对您不可用。这在某些类型特性中实际上是必需的。特别是,trampolines 是一种已知的技术,在标准 C++ 中不可用。 - MSalters
6个回答

94

std::function 的实现可能因不同的实现而异,但其核心思想是使用类型擦除。虽然有多种方法可以实现它,但你可以想象一个简单(不是最优)的解决方案可能像这样(为了简化起见,特定情况下的std::function<int(double)>):

struct callable_base {
   virtual int operator()(double d) = 0;
   virtual ~callable_base() {}
};
template <typename F>
struct callable : callable_base {
   F functor;
   callable(F functor) : functor(functor) {}
   virtual int operator()(double d) { return functor(d); }
};
class function_int_double {
   std::unique_ptr<callable_base> c;
public:
   template <typename F>
   function(F f) {
      c.reset(new callable<F>(f));
   }
   int operator()(double d) { return c(d); }
// ...
};

在这种简单的方法中,function对象仅存储对基类型的unique_ptr。对于每个使用function的不同函数对象,都会创建一个从基类派生的新类型,并动态实例化该类型的对象。 std::function对象始终具有相同的大小,并且将为堆中所需的不同函数对象分配空间。

在现实生活中,存在不同的优化措施可提供性能优势,但会使答案变得复杂。该类型可以使用小对象优化,动态调度可以被替换为以函数指针作为参数接受函数对象,以避免一级间接引用...但基本思想是相同的。


关于std::function副本如何行事的问题,快速测试表明内部可调用对象的副本是被执行的,而不是共享状态。

// g++4.8
int main() {
   int value = 5;
   typedef std::function<void()> fun;
   fun f1 = [=]() mutable { std::cout << value++ << '\n' };
   fun f2 = f1;
   f1();                    // prints 5
   fun f3 = f1;
   f2();                    // prints 5
   f3();                    // prints 6 (copy after first increment)
}

测试表明,f2 获得的是可调用实体的副本,而不是引用。如果这个可调用实体被不同的 std::function<> 对象共享,那么程序的输出将会是5、6、7。


10
这只是真实代码的过于简化版,我只是在浏览器中输入了它,因此可能存在拼写错误和/或由不同原因导致编译失败。答案中的代码仅用于展示类型擦除如何实现,显然这不是生产质量的代码。 - David Rodríguez - dribeas
2
@MiklósHomolya:这是一个明显的过度简化,所以我认为对于这个答案来说不需要改变。 - Mooing Duck
2
@MooingDuck:我确信lambda是可复制的(5.1.2/19),但这不是问题,而是如果内部对象被复制,std::function的语义是否正确,我认为这不是情况(考虑捕获值并且是可变的lambda存储在std::function中,如果函数状态被复制,则标准算法中std::function的副本数量可能会导致不同的结果,这是不希望的。 - David Rodríguez - dribeas
1
@MiklósHomolya:我使用g++ 4.8进行了测试,实现确实会复制内部状态。如果可调用实体足够大以需要动态分配,则std::function的副本将触发分配。 - David Rodríguez - dribeas
4
@DavidRodríguez-dribeas分享状态是不可取的,因为小对象优化意味着您会在编译器和编译器版本确定的大小阈值处从共享状态转换为非共享状态(因为小对象优化会阻止共享状态)。这似乎是有问题的。 - Yakk - Adam Nevraumont
显示剩余7条评论

42

@David Rodríguez - dribeas的回答很好地展示了类型擦除,但并不够好,因为类型擦除还包括如何复制类型(在该回答中,函数对象将无法进行复制构造)。这些行为也存储在function对象中,除了函数对象数据之外。

Ubuntu 14.04 gcc 4.8的STL实现中使用的技巧是编写一个通用函数,对每个可能的函数对象类型进行特化,并将它们转换为通用函数指针类型。因此,类型信息被擦除

我已经简化了这个过程,希望能有所帮助。

#include <iostream>
#include <memory>

template <typename T>
class function;

template <typename R, typename... Args>
class function<R(Args...)>
{
    // function pointer types for the type-erasure behaviors
    // all these char* parameters are actually casted from some functor type
    typedef R (*invoke_fn_t)(char*, Args&&...);
    typedef void (*construct_fn_t)(char*, char*);
    typedef void (*destroy_fn_t)(char*);

    // type-aware generic functions for invoking
    // the specialization of these functions won't be capable with
    //   the above function pointer types, so we need some cast
    template <typename Functor>
    static R invoke_fn(Functor* fn, Args&&... args)
    {
        return (*fn)(std::forward<Args>(args)...);
    }

    template <typename Functor>
    static void construct_fn(Functor* construct_dst, Functor* construct_src)
    {
        // the functor type must be copy-constructible
        new (construct_dst) Functor(*construct_src);
    }

    template <typename Functor>
    static void destroy_fn(Functor* f)
    {
        f->~Functor();
    }

    // these pointers are storing behaviors
    invoke_fn_t invoke_f;
    construct_fn_t construct_f;
    destroy_fn_t destroy_f;

    // erase the type of any functor and store it into a char*
    // so the storage size should be obtained as well
    std::unique_ptr<char[]> data_ptr;
    size_t data_size;
public:
    function()
        : invoke_f(nullptr)
        , construct_f(nullptr)
        , destroy_f(nullptr)
        , data_ptr(nullptr)
        , data_size(0)
    {}

    // construct from any functor type
    template <typename Functor>
    function(Functor f)
        // specialize functions and erase their type info by casting
        : invoke_f(reinterpret_cast<invoke_fn_t>(invoke_fn<Functor>))
        , construct_f(reinterpret_cast<construct_fn_t>(construct_fn<Functor>))
        , destroy_f(reinterpret_cast<destroy_fn_t>(destroy_fn<Functor>))
        , data_ptr(new char[sizeof(Functor)])
        , data_size(sizeof(Functor))
    {
        // copy the functor to internal storage
        this->construct_f(this->data_ptr.get(), reinterpret_cast<char*>(&f));
    }

    // copy constructor
    function(function const& rhs)
        : invoke_f(rhs.invoke_f)
        , construct_f(rhs.construct_f)
        , destroy_f(rhs.destroy_f)
        , data_size(rhs.data_size)
    {
        if (this->invoke_f) {
            // when the source is not a null function, copy its internal functor
            this->data_ptr.reset(new char[this->data_size]);
            this->construct_f(this->data_ptr.get(), rhs.data_ptr.get());
        }
    }

    ~function()
    {
        if (data_ptr != nullptr) {
            this->destroy_f(this->data_ptr.get());
        }
    }

    // other constructors, from nullptr, from function pointers

    R operator()(Args&&... args)
    {
        return this->invoke_f(this->data_ptr.get(), std::forward<Args>(args)...);
    }
};

// examples
int main()
{
    int i = 0;
    auto fn = [i](std::string const& s) mutable
    {
        std::cout << ++i << ". " << s << std::endl;
    };
    fn("first");                                   // 1. first
    fn("second");                                  // 2. second

    // construct from lambda
    ::function<void(std::string const&)> f(fn);
    f("third");                                    // 3. third

    // copy from another function
    ::function<void(std::string const&)> g(f);
    f("forth - f");                                // 4. forth - f
    g("forth - g");                                // 4. forth - g

    // capture and copy non-trivial types like std::string
    std::string x("xxxx");
    ::function<void()> h([x]() { std::cout << x << std::endl; });
    h();

    ::function<void()> k(h);
    k();
    return 0;
}

STL版本还进行了一些优化:

  • construct_fdestroy_f被混合成一个函数指针(带有一个额外的参数来告诉它该执行什么操作),以节省一些字节。
  • 原始指针用于存储函数对象,与一个函数指针一起存储在一个union中,因此当从函数指针构建function对象时,它将直接存储在union而不是堆空间中。

也许STL实现并不是最好的解决方案,因为我听说过一些更快的实现。但是我认为底层机制是相同的。


为什么在返回语句之前的invoke_fn中没有fn = reinterpret_cast<Functor*(fn);代码也能正常工作? - Roger Smith
代码对于在函数中定义 lambda,然后在设置后进行 self-references 的情况似乎无效。它在任何参数配置下都无法工作。 错误 C2280“function<int (int)> & function<int (int)>::operator = (const function<int (int)> &)”:尝试引用已删除的函数。 - Kalen

20
对于某些类型的参数(“如果f的目标是通过reference_wrapper或函数指针传递的可调用对象”),std::function的构造函数不允许任何异常,因此使用动态内存是不可能的。对于这种情况,所有数据必须直接存储在std::function对象内部。
在一般情况下(包括lambda情况),使用动态内存(通过标准分配器或传递给std::function构造函数的分配器)是允许的,由实现自行决定。标准建议实现避免使用动态内存,但正如您所说,如果函数对象(而不是std::function对象,而是包装在其中的对象)足够大,则无法防止它,因为std::function具有固定大小。

这个允许抛出异常的权限被授予给普通构造函数和复制构造函数,这明确允许在复制过程中进行动态内存分配。对于移动操作,没有理由需要动态内存。标准似乎并没有明确禁止它,如果移动可能调用包装对象类型的移动构造函数,则可能无法禁止,但您应该能够假设如果实现和您的对象都是合理的,移动不会导致任何分配。


2
@neuront 给出了一个鼓舞人心的答案,但是通过不同类型的函数指针调用函数可能会引发未定义的行为。我尝试以稍微不同的方式实现了 "std::function",这可能是不完整的,但可以与https://en.cppreference.com/w/cpp/utility/functional/function中的示例代码一起使用。
#include <type_traits>
#include <utility>
#include <stdexcept>

template <typename... Args> class function;

template <typename R, typename... Args>
class function<R(Args...)> {
public:
  /** construct empty function object */
  function(): m_functor(nullptr), m_invoke(nullptr), m_delete(nullptr), m_copy(nullptr) {}

  /** destruct function object */
  ~function() {
    if (m_delete) m_delete(*this);
  }

  /** construct a valid function object from the copy of the given function pointer or functor */
  template <typename F, typename std::enable_if<
    !std::is_same<typename std::decay<F>::type, function>::value, int>::type = 1>
  function(F&& functor): function(1, cast_mem_fn(std::forward<F>(functor))) {}

  /** run function call */
  R operator()(Args... args) const {
    if (!m_functor || !m_invoke) throw std::runtime_error("call an empty function object");
    return (*m_invoke)(*this, static_cast<Args>(args)...);
  }

  /** copy constructor */
  function(const function &other): m_functor(other.m_copy ? (*other.m_copy)(other) : nullptr),
    m_invoke(other.m_invoke), m_delete(other.m_delete), m_copy(other.m_copy) {}

  /** move constructor */
  function(function &&other): m_functor(other.m_functor), m_invoke(other.m_invoke),
    m_delete(other.m_delete), m_copy(other.m_copy) {
    other.m_functor = nullptr;
    other.m_invoke = nullptr;
    other.m_delete = nullptr;
    other.m_copy = nullptr;
  }

  /** copy assignment */
  function& operator=(const function &other) {
    if (this == &other) return *this;
    if (m_delete) m_delete(*this);
    m_functor = other.m_copy ? (*other.m_copy)(other) : nullptr;
    m_invoke = other.m_invoke;
    m_delete = other.m_delete;
    m_copy = other.m_copy;
    return *this;
  }

  /** move assignment */
  function& operator=(function &&other) {
    if (m_delete) m_delete(*this);
    m_functor = other.m_functor;
    m_invoke = other.m_invoke;
    m_delete = other.m_delete;
    m_copy = other.m_copy;
    other.m_functor = nullptr;
    other.m_invoke = nullptr;
    other.m_delete = nullptr;
    other.m_copy = nullptr;
    return *this;
  }

private:

  template <typename F>
  function(int dummy, F&& functor): m_functor(reinterpret_cast<char*>(new
    typename std::decay<F>::type(std::forward<F>(functor)))) {
    typedef typename std::decay<F>::type functor_type;
    static_assert(std::is_same<R, decltype(invoke_impl<functor_type>(
      function(), std::declval<Args>()...))>::value, "invalid functor type");
    static_assert(std::is_copy_constructible<functor_type>::value,
      "uncopyable functor type");
    m_invoke = invoke_impl<functor_type>;
    m_delete = delete_impl<functor_type>;
    m_copy = copy_impl<functor_type>;
  }

  template <typename F>
  F&& cast_mem_fn(F&& f) {
    return static_cast<F&&>(f);
  }

  /** a pointer to class member cannot be casted to char* */
  /** conversion to a functor can solve this issue */
  template <typename CLASS, typename METHOD>
  class pmf_wrapper {
    METHOD CLASS::*m_pmf;

  public:
    pmf_wrapper(METHOD CLASS::*pmf): m_pmf(pmf) {}

    R operator()(Args... args) {
      return invoke<METHOD>(static_cast<Args>(args)...);
    }

  private:
    template <typename T, typename std::enable_if<std::is_same<CLASS,
      typename std::decay<T>::type>::value, int>::type = 1>
    T&& transfer(T&& inst) {
      return static_cast<T&&>(inst);
    }

    template <typename T, typename std::enable_if<std::is_same<CLASS,
      typename std::decay<decltype(*T())>::type>::value, int>::type = 1>
    auto transfer(T&& ptr)->decltype(*ptr) {
      return *ptr;
    }
    
    /** member function pointer */
    template <typename MT,
      typename std::enable_if<std::is_function<MT>::value, int>::type = 1,
      typename T, typename... SUBARGS>
    R invoke(T&& inst, SUBARGS&&... args) {
      return (transfer(std::forward<T>(inst)).*m_pmf)(std::forward<SUBARGS>(args)...);
    }

    /** data member pointer */
    template <typename MT,
      typename std::enable_if<!std::is_function<MT>::value, int>::type = 1,
      typename T>
    R invoke(T&& inst) {
      return transfer(std::forward<T>(inst)).*m_pmf;
    }
  };

  template <typename CLASS, typename METHOD>
  pmf_wrapper<CLASS, METHOD> cast_mem_fn(METHOD CLASS::*pmf) {
    return pmf_wrapper<CLASS, METHOD>(pmf);
  }

  template <typename F>
  static auto invoke_impl(const function &obj, Args... args)->
    decltype(std::declval<F>()(static_cast<Args>(args)...)) {
    return (*reinterpret_cast<F*>(obj.m_functor))(static_cast<Args>(args)...);
  }

  template <typename F>
  static void delete_impl(const function &obj) {
    delete reinterpret_cast<F*>(obj.m_functor);
  }

  template <typename F>
  static char *copy_impl(const function &obj) {
    return reinterpret_cast<char*>(new F(*reinterpret_cast<const F*>(obj.m_functor)));
  }

  /** pointer to the internal function pointer/functor object (on heap) */
  char *m_functor;

  /** call m_functor */
  R (*m_invoke)(const function &obj, Args... args);

  /** destroy m_functor */
  void (*m_delete)(const function &obj);

  /** copy m_functor */
  char *(*m_copy)(const function &obj);

};

1
@neuront 给出了一个精确的答案,技巧需要新的技术支持,这段代码来自 GNU std::function。
// Implementation of std::function -*- C++ -*-

// Copyright (C) 2004-2018 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file include/bits/std_function.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{functional}
 */

#ifndef _GLIBCXX_STD_FUNCTION_H
#define _GLIBCXX_STD_FUNCTION_H 1

#pragma GCC system_header

#if __cplusplus < 201103L
# include <bits/c++0x_warning.h>
#else

#if __cpp_rtti
# include <typeinfo>
#endif
#include <bits/stl_function.h>
#include <bits/invoke.h>
#include <bits/refwrap.h>
#include <bits/functexcept.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  /**
   *  @brief Exception class thrown when class template function's
   *  operator() is called with an empty target.
   *  @ingroup exceptions
   */
  class bad_function_call : public std::exception
  {
  public:
    virtual ~bad_function_call() noexcept;

    const char* what() const noexcept;
  };

  /**
   *  Trait identifying "location-invariant" types, meaning that the
   *  address of the object (or any of its members) will not escape.
   *  Trivially copyable types are location-invariant and users can
   *  specialize this trait for other types.
   */
  template<typename _Tp>
    struct __is_location_invariant
    : is_trivially_copyable<_Tp>::type
    { };

  class _Undefined_class;

  union _Nocopy_types
  {
    void*       _M_object;
    const void* _M_const_object;
    void (*_M_function_pointer)();
    void (_Undefined_class::*_M_member_pointer)();
  };

  union [[gnu::may_alias]] _Any_data
  {
    void*       _M_access()       { return &_M_pod_data[0]; }
    const void* _M_access() const { return &_M_pod_data[0]; }

    template<typename _Tp>
      _Tp&
      _M_access()
      { return *static_cast<_Tp*>(_M_access()); }

    template<typename _Tp>
      const _Tp&
      _M_access() const
      { return *static_cast<const _Tp*>(_M_access()); }

    _Nocopy_types _M_unused;
    char _M_pod_data[sizeof(_Nocopy_types)];
  };

  enum _Manager_operation
  {
    __get_type_info,
    __get_functor_ptr,
    __clone_functor,
    __destroy_functor
  };

  // Simple type wrapper that helps avoid annoying const problems
  // when casting between void pointers and pointers-to-pointers.
  template<typename _Tp>
    struct _Simple_type_wrapper
    {
      _Simple_type_wrapper(_Tp __value) : __value(__value) { }

      _Tp __value;
    };

  template<typename _Tp>
    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
    : __is_location_invariant<_Tp>
    { };

  template<typename _Signature>
    class function;

  /// Base class of all polymorphic function object wrappers.
  class _Function_base
  {
  public:
    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);

    template<typename _Functor>
      class _Base_manager
      {
      protected:
    static const bool __stored_locally =
    (__is_location_invariant<_Functor>::value
     && sizeof(_Functor) <= _M_max_size
     && __alignof__(_Functor) <= _M_max_align
     && (_M_max_align % __alignof__(_Functor) == 0));

    typedef integral_constant<bool, __stored_locally> _Local_storage;

    // Retrieve a pointer to the function object
    static _Functor*
    _M_get_pointer(const _Any_data& __source)
    {
      const _Functor* __ptr =
        __stored_locally? std::__addressof(__source._M_access<_Functor>())
        /* have stored a pointer */ : __source._M_access<_Functor*>();
      return const_cast<_Functor*>(__ptr);
    }

    // Clone a location-invariant function object that fits within
    // an _Any_data structure.
    static void
    _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
    {
      ::new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
    }

    // Clone a function object that is not location-invariant or
    // that cannot fit into an _Any_data structure.
    static void
    _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
    {
      __dest._M_access<_Functor*>() =
        new _Functor(*__source._M_access<_Functor*>());
    }

    // Destroying a location-invariant object may still require
    // destruction.
    static void
    _M_destroy(_Any_data& __victim, true_type)
    {
      __victim._M_access<_Functor>().~_Functor();
    }

    // Destroying an object located on the heap.
    static void
    _M_destroy(_Any_data& __victim, false_type)
    {
      delete __victim._M_access<_Functor*>();
    }

      public:
    static bool
    _M_manager(_Any_data& __dest, const _Any_data& __source,
           _Manager_operation __op)
    {
      switch (__op)
        {
#if __cpp_rtti
        case __get_type_info:
          __dest._M_access<const type_info*>() = &typeid(_Functor);
          break;
#endif
        case __get_functor_ptr:
          __dest._M_access<_Functor*>() = _M_get_pointer(__source);
          break;

        case __clone_functor:
          _M_clone(__dest, __source, _Local_storage());
          break;

        case __destroy_functor:
          _M_destroy(__dest, _Local_storage());
          break;
        }
      return false;
    }

    static void
    _M_init_functor(_Any_data& __functor, _Functor&& __f)
    { _M_init_functor(__functor, std::move(__f), _Local_storage()); }

    template<typename _Signature>
      static bool
      _M_not_empty_function(const function<_Signature>& __f)
      { return static_cast<bool>(__f); }

    template<typename _Tp>
      static bool
      _M_not_empty_function(_Tp* __fp)
      { return __fp != nullptr; }

    template<typename _Class, typename _Tp>
      static bool
      _M_not_empty_function(_Tp _Class::* __mp)
      { return __mp != nullptr; }

    template<typename _Tp>
      static bool
      _M_not_empty_function(const _Tp&)
      { return true; }

      private:
    static void
    _M_init_functor(_Any_data& __functor, _Functor&& __f, true_type)
    { ::new (__functor._M_access()) _Functor(std::move(__f)); }

    static void
    _M_init_functor(_Any_data& __functor, _Functor&& __f, false_type)
    { __functor._M_access<_Functor*>() = new _Functor(std::move(__f)); }
      };

    _Function_base() : _M_manager(nullptr) { }

    ~_Function_base()
    {
      if (_M_manager)
    _M_manager(_M_functor, _M_functor, __destroy_functor);
    }

    bool _M_empty() const { return !_M_manager; }

    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
                  _Manager_operation);

    _Any_data     _M_functor;
    _Manager_type _M_manager;
  };

  template<typename _Signature, typename _Functor>
    class _Function_handler;

  template<typename _Res, typename _Functor, typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), _Functor>
    : public _Function_base::_Base_manager<_Functor>
    {
      typedef _Function_base::_Base_manager<_Functor> _Base;

    public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    return (*_Base::_M_get_pointer(__functor))(
        std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Functor, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), _Functor>
    : public _Function_base::_Base_manager<_Functor>
    {
      typedef _Function_base::_Base_manager<_Functor> _Base;

     public:
      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    (*_Base::_M_get_pointer(__functor))(
        std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Class, typename _Member, typename _Res,
       typename... _ArgTypes>
    class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
    : public _Function_handler<void(_ArgTypes...), _Member _Class::*>
    {
      typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
    _Base;

     public:
      static _Res
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    return std::__invoke(_Base::_M_get_pointer(__functor)->__value,
                 std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _Class, typename _Member, typename... _ArgTypes>
    class _Function_handler<void(_ArgTypes...), _Member _Class::*>
    : public _Function_base::_Base_manager<
         _Simple_type_wrapper< _Member _Class::* > >
    {
      typedef _Member _Class::* _Functor;
      typedef _Simple_type_wrapper<_Functor> _Wrapper;
      typedef _Function_base::_Base_manager<_Wrapper> _Base;

    public:
      static bool
      _M_manager(_Any_data& __dest, const _Any_data& __source,
         _Manager_operation __op)
      {
    switch (__op)
      {
#if __cpp_rtti
      case __get_type_info:
        __dest._M_access<const type_info*>() = &typeid(_Functor);
        break;
#endif
      case __get_functor_ptr:
        __dest._M_access<_Functor*>() =
          &_Base::_M_get_pointer(__source)->__value;
        break;

      default:
        _Base::_M_manager(__dest, __source, __op);
      }
    return false;
      }

      static void
      _M_invoke(const _Any_data& __functor, _ArgTypes&&... __args)
      {
    std::__invoke(_Base::_M_get_pointer(__functor)->__value,
              std::forward<_ArgTypes>(__args)...);
      }
    };

  template<typename _From, typename _To>
    using __check_func_return_type
      = __or_<is_void<_To>, is_same<_From, _To>, is_convertible<_From, _To>>;

  /**
   *  @brief Primary class template for std::function.
   *  @ingroup functors
   *
   *  Polymorphic function wrapper.
   */
  template<typename _Res, typename... _ArgTypes>
    class function<_Res(_ArgTypes...)>
    : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
      private _Function_base
    {
      template<typename _Func,
           typename _Res2 = typename result_of<_Func&(_ArgTypes...)>::type>
    struct _Callable : __check_func_return_type<_Res2, _Res> { };

      // Used so the return type convertibility checks aren't done when
      // performing overload resolution for copy construction/assignment.
      template<typename _Tp>
    struct _Callable<function, _Tp> : false_type { };

      template<typename _Cond, typename _Tp>
    using _Requires = typename enable_if<_Cond::value, _Tp>::type;

    public:
      typedef _Res result_type;

      // [3.7.2.1] construct/copy/destroy

      /**
       *  @brief Default construct creates an empty function call wrapper.
       *  @post @c !(bool)*this
       */
      function() noexcept
      : _Function_base() { }

      /**
       *  @brief Creates an empty function call wrapper.
       *  @post @c !(bool)*this
       */
      function(nullptr_t) noexcept
      : _Function_base() { }

      /**
       *  @brief %Function copy constructor.
       *  @param __x A %function object with identical call signature.
       *  @post @c bool(*this) == bool(__x)
       *
       *  The newly-created %function contains a copy of the target of @a
       *  __x (if it has one).
       */
      function(const function& __x);

      /**
       *  @brief %Function move constructor.
       *  @param __x A %function object rvalue with identical call signature.
       *
       *  The newly-created %function contains the target of @a __x
       *  (if it has one).
       */
      function(function&& __x) noexcept : _Function_base()
      {
    __x.swap(*this);
      }

      /**
       *  @brief Builds a %function that targets a copy of the incoming
       *  function object.
       *  @param __f A %function object that is callable with parameters of
       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
       *  to @c Res.
       *
       *  The newly-created %function object will target a copy of
       *  @a __f. If @a __f is @c reference_wrapper<F>, then this function
       *  object will contain a reference to the function object @c
       *  __f.get(). If @a __f is a NULL function pointer or NULL
       *  pointer-to-member, the newly-created object will be empty.
       *
       *  If @a __f is a non-NULL function pointer or an object of type @c
       *  reference_wrapper<F>, this function will not throw.
       */
      template<typename _Functor,
           typename = _Requires<__not_<is_same<_Functor, function>>, void>,
           typename = _Requires<_Callable<_Functor>, void>>
    function(_Functor);

      /**
       *  @brief %Function assignment operator.
       *  @param __x A %function with identical call signature.
       *  @post @c (bool)*this == (bool)x
       *  @returns @c *this
       *
       *  The target of @a __x is copied to @c *this. If @a __x has no
       *  target, then @c *this will be empty.
       *
       *  If @a __x targets a function pointer or a reference to a function
       *  object, then this operation will not throw an %exception.
       */
      function&
      operator=(const function& __x)
      {
    function(__x).swap(*this);
    return *this;
      }

      /**
       *  @brief %Function move-assignment operator.
       *  @param __x A %function rvalue with identical call signature.
       *  @returns @c *this
       *
       *  The target of @a __x is moved to @c *this. If @a __x has no
       *  target, then @c *this will be empty.
       *
       *  If @a __x targets a function pointer or a reference to a function
       *  object, then this operation will not throw an %exception.
       */
      function&
      operator=(function&& __x) noexcept
      {
    function(std::move(__x)).swap(*this);
    return *this;
      }

      /**
       *  @brief %Function assignment to zero.
       *  @post @c !(bool)*this
       *  @returns @c *this
       *
       *  The target of @c *this is deallocated, leaving it empty.
       */
      function&
      operator=(nullptr_t) noexcept
      {
    if (_M_manager)
      {
        _M_manager(_M_functor, _M_functor, __destroy_functor);
        _M_manager = nullptr;
        _M_invoker = nullptr;
      }
    return *this;
      }

      /**
       *  @brief %Function assignment to a new target.
       *  @param __f A %function object that is callable with parameters of
       *  type @c T1, @c T2, ..., @c TN and returns a value convertible
       *  to @c Res.
       *  @return @c *this
       *
       *  This  %function object wrapper will target a copy of @a
       *  __f. If @a __f is @c reference_wrapper<F>, then this function
       *  object will contain a reference to the function object @c
       *  __f.get(). If @a __f is a NULL function pointer or NULL
       *  pointer-to-member, @c this object will be empty.
       *
       *  If @a __f is a non-NULL function pointer or an object of type @c
       *  reference_wrapper<F>, this function will not throw.
       */
      template<typename _Functor>
    _Requires<_Callable<typename decay<_Functor>::type>, function&>
    operator=(_Functor&& __f)
    {
      function(std::forward<_Functor>(__f)).swap(*this);
      return *this;
    }

      /// @overload
      template<typename _Functor>
    function&
    operator=(reference_wrapper<_Functor> __f) noexcept
    {
      function(__f).swap(*this);
      return *this;
    }

      // [3.7.2.2] function modifiers

      /**
       *  @brief Swap the targets of two %function objects.
       *  @param __x A %function with identical call signature.
       *
       *  Swap the targets of @c this function object and @a __f. This
       *  function will not throw an %exception.
       */
      void swap(function& __x) noexcept
      {
    std::swap(_M_functor, __x._M_functor);
    std::swap(_M_manager, __x._M_manager);
    std::swap(_M_invoker, __x._M_invoker);
      }

      // [3.7.2.3] function capacity

      /**
       *  @brief Determine if the %function wrapper has a target.
       *
       *  @return @c true when this %function object contains a target,
       *  or @c false when it is empty.
       *
       *  This function will not throw an %exception.
       */
      explicit operator bool() const noexcept
      { return !_M_empty(); }

      // [3.7.2.4] function invocation

      /**
       *  @brief Invokes the function targeted by @c *this.
       *  @returns the result of the target.
       *  @throws bad_function_call when @c !(bool)*this
       *
       *  The function call operator invokes the target function object
       *  stored by @c this.
       */
      _Res operator()(_ArgTypes... __args) const;

#if __cpp_rtti
      // [3.7.2.5] function target access
      /**
       *  @brief Determine the type of the target of this function object
       *  wrapper.
       *
       *  @returns the type identifier of the target function object, or
       *  @c typeid(void) if @c !(bool)*this.
       *
       *  This function will not throw an %exception.
       */
      const type_info& target_type() const noexcept;

      /**
       *  @brief Access the stored target function object.
       *
       *  @return Returns a pointer to the stored target function object,
       *  if @c typeid(_Functor).equals(target_type()); otherwise, a NULL
       *  pointer.
       *
       * This function does not throw exceptions.
       *
       * @{
       */
      template<typename _Functor>       _Functor* target() noexcept;

      template<typename _Functor> const _Functor* target() const noexcept;
      // @}
#endif

    private:
      using _Invoker_type = _Res (*)(const _Any_data&, _ArgTypes&&...);
      _Invoker_type _M_invoker;
  };

#if __cpp_deduction_guides >= 201606
  template<typename>
    struct __function_guide_helper
    { };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) & noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) const noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename _Tp, bool _Nx, typename... _Args>
    struct __function_guide_helper<
      _Res (_Tp::*) (_Args...) const & noexcept(_Nx)
    >
    { using type = _Res(_Args...); };

  template<typename _Res, typename... _ArgTypes>
    function(_Res(*)(_ArgTypes...)) -> function<_Res(_ArgTypes...)>;

  template<typename _Functor, typename _Signature = typename
       __function_guide_helper<decltype(&_Functor::operator())>::type>
    function(_Functor) -> function<_Signature>;
#endif

  // Out-of-line member definitions.
  template<typename _Res, typename... _ArgTypes>
    function<_Res(_ArgTypes...)>::
    function(const function& __x)
    : _Function_base()
    {
      if (static_cast<bool>(__x))
    {
      __x._M_manager(_M_functor, __x._M_functor, __clone_functor);
      _M_invoker = __x._M_invoker;
      _M_manager = __x._M_manager;
    }
    }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor, typename, typename>
      function<_Res(_ArgTypes...)>::
      function(_Functor __f)
      : _Function_base()
      {
    typedef _Function_handler<_Res(_ArgTypes...), _Functor> _My_handler;

    if (_My_handler::_M_not_empty_function(__f))
      {
        _My_handler::_M_init_functor(_M_functor, std::move(__f));
        _M_invoker = &_My_handler::_M_invoke;
        _M_manager = &_My_handler::_M_manager;
      }
      }

  template<typename _Res, typename... _ArgTypes>
    _Res
    function<_Res(_ArgTypes...)>::
    operator()(_ArgTypes... __args) const
    {
      if (_M_empty())
    __throw_bad_function_call();
      return _M_invoker(_M_functor, std::forward<_ArgTypes>(__args)...);
    }

#if __cpp_rtti
  template<typename _Res, typename... _ArgTypes>
    const type_info&
    function<_Res(_ArgTypes...)>::
    target_type() const noexcept
    {
      if (_M_manager)
    {
      _Any_data __typeinfo_result;
      _M_manager(__typeinfo_result, _M_functor, __get_type_info);
      return *__typeinfo_result._M_access<const type_info*>();
    }
      else
    return typeid(void);
    }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      _Functor*
      function<_Res(_ArgTypes...)>::
      target() noexcept
      {
    const function* __const_this = this;
    const _Functor* __func = __const_this->template target<_Functor>();
    return const_cast<_Functor*>(__func);
      }

  template<typename _Res, typename... _ArgTypes>
    template<typename _Functor>
      const _Functor*
      function<_Res(_ArgTypes...)>::
      target() const noexcept
      {
    if (typeid(_Functor) == target_type() && _M_manager)
      {
        _Any_data __ptr;
        _M_manager(__ptr, _M_functor, __get_functor_ptr);
        return __ptr._M_access<const _Functor*>();
      }
    else
      return nullptr;
      }
#endif

  // [20.7.15.2.6] null pointer comparisons

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c true if the wrapper has no target, @c false otherwise
   *
   *  This function will not throw an %exception.
   */
  template<typename _Res, typename... _Args>
    inline bool
    operator==(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
    { return !static_cast<bool>(__f); }

  /// @overload
  template<typename _Res, typename... _Args>
    inline bool
    operator==(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
    { return !static_cast<bool>(__f); }

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c false if the wrapper has no target, @c true otherwise
   *
   *  This function will not throw an %exception.
   */
  template<typename _Res, typename... _Args>
    inline bool
    operator!=(const function<_Res(_Args...)>& __f, nullptr_t) noexcept
    { return static_cast<bool>(__f); }

  /// @overload
  template<typename _Res, typename... _Args>
    inline bool
    operator!=(nullptr_t, const function<_Res(_Args...)>& __f) noexcept
    { return static_cast<bool>(__f); }


  // [20.7.15.2.7] specialized algorithms

  /**
   *  @brief Swap the targets of two polymorphic function object wrappers.
   *
   *  This function will not throw an %exception.
   */
  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // 2062. Effect contradictions w/o no-throw guarantee of std::function swaps
  template<typename _Res, typename... _Args>
    inline void
    swap(function<_Res(_Args...)>& __x, function<_Res(_Args...)>& __y) noexcept
    { __x.swap(__y); }

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif // C++11

#endif // _GLIBCXX_STD_FUNCTION_H


-5
一个 std::function 重载了 operator(),使其成为一个函数对象,lambda 表达式也是同样的方式。它基本上创建了一个带有成员变量的结构体,这些成员变量可以在 operator() 函数内部访问。因此,需要记住的基本概念是 lambda 是一个对象(称为函数对象或函数器),而不是函数。标准规定尽可能避免使用动态内存。

2
在一个固定大小的std::function中,如何可能容纳任意大的lambda函数呢?这就是关键问题。 - user2545918
2
@aaronman:我保证每个std::function对象的大小都相同,并且不是包含的lambda表达式的大小。 - Mooing Duck
5
与每个std::vector<T...>对象独立于实际分配器实例/元素数量具有(编译时)固定大小的方式相同。 - sehe
3
@aaronman:也许你应该找一个stackoverflow问题,回答了std::function如何实现可以包含任意大小的lambda表达式 :P - Mooing Duck
1
@aaronman:Lambda表达式创建了一个闭包类型,该闭包需要维护对被捕获对象的引用,并且引用确实占用一些空间(通常是指针大小)。Lambda是捕获引用还是值并不太重要,它具有可以超出创建Lambda的上下文的内部状态。 - David Rodríguez - dribeas
显示剩余10条评论

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接