将光频率转换为RGB颜色?

142

有没有人知道将光频率转换为RGB值的公式?


3
物理和编程方面的技术问题,+1。 - whatnick
3
请看这个真实光谱颜色的近似值 - Spektre
9个回答

50

5
Fourmilab的文章指出一个重要观点,即某些颜色无法用RGB表示(鲜艳的橙色是一个很好的例子),因为你不能通过将三种原色混合来“制造”任意颜色的光线,不管我们的物理老师曾经告诉过我们什么(我的老师曾经告诉过我)。很遗憾,但在实践中通常并不致命。 - Francis Davey
1
此外:http://en.wikipedia.org/wiki/Srgb 该文章是在sRGB标准被广泛采用之前编写的。还要注意“计算假定2°标准色度观察者”这句话,这意味着应使用附带源中找到的CIE 1931表,而不是CIE 1964表。 - GrayFace
3
提供一些如何使用代码的示例会很好。它需要将函数作为参数,使用温度来计算颜色等内容。人们会很高兴知道要删除和更改哪些内容才能使其正常工作。 - Tomáš Zato
3
值得注意的是,只有所有可能的可见波长中的一小部分可以在RGB颜色空间中准确表示。转换过程非常复杂且不确定性较大。请参阅https://physics.stackexchange.com/a/94446/5089和https://physics.stackexchange.com/a/419628/5089。 - Violet Giraffe
2
所包含源代码的“main”函数似乎将各种色温转换为RGB,而不是直接转换单个光频。也许可以直接将代码转换为转换波长,但需要做什么并不立即显而易见。 - M. Justin
2
虽然这个链接可能回答了问题,但最好在这里包含答案的关键部分,并提供链接作为参考。仅提供链接的答案可能会因为链接页面的更改而失效。 - undefined

31

对于像我这样的懒人,这里提供了一个Java实现代码,它是从@user151323在Spectra Lab Report中找到的Pascal代码进行简单转换得到的:

static private final double Gamma = 0.80;
static private final double IntensityMax = 255;

/**
 * Taken from Earl F. Glynn's web page:
 * <a href="http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm">Spectra Lab Report</a>
 */
public static int[] waveLengthToRGB(double Wavelength) {
    double factor;
    double Red, Green, Blue;

    if((Wavelength >= 380) && (Wavelength < 440)) {
        Red = -(Wavelength - 440) / (440 - 380);
        Green = 0.0;
        Blue = 1.0;
    } else if((Wavelength >= 440) && (Wavelength < 490)) {
        Red = 0.0;
        Green = (Wavelength - 440) / (490 - 440);
        Blue = 1.0;
    } else if((Wavelength >= 490) && (Wavelength < 510)) {
        Red = 0.0;
        Green = 1.0;
        Blue = -(Wavelength - 510) / (510 - 490);
    } else if((Wavelength >= 510) && (Wavelength < 580)) {
        Red = (Wavelength - 510) / (580 - 510);
        Green = 1.0;
        Blue = 0.0;
    } else if((Wavelength >= 580) && (Wavelength < 645)) {
        Red = 1.0;
        Green = -(Wavelength - 645) / (645 - 580);
        Blue = 0.0;
    } else if((Wavelength >= 645) && (Wavelength < 781)) {
        Red = 1.0;
        Green = 0.0;
        Blue = 0.0;
    } else {
        Red = 0.0;
        Green = 0.0;
        Blue = 0.0;
    }

    // Let the intensity fall off near the vision limits

    if((Wavelength >= 380) && (Wavelength < 420)) {
        factor = 0.3 + 0.7 * (Wavelength - 380) / (420 - 380);
    } else if((Wavelength >= 420) && (Wavelength < 701)) {
        factor = 1.0;
    } else if((Wavelength >= 701) && (Wavelength < 781)) {
        factor = 0.3 + 0.7 * (780 - Wavelength) / (780 - 700);
    } else {
        factor = 0.0;
    }


    int[] rgb = new int[3];

    // Don't want 0^x = 1 for x <> 0
    rgb[0] = Red == 0.0 ? 0 : (int)Math.round(IntensityMax * Math.pow(Red * factor, Gamma));
    rgb[1] = Green == 0.0 ? 0 : (int)Math.round(IntensityMax * Math.pow(Green * factor, Gamma));
    rgb[2] = Blue == 0.0 ? 0 : (int)Math.round(IntensityMax * Math.pow(Blue * factor, Gamma));

    return rgb;
}

3
您的代码似乎存在问题。例如,如果波长为439.5,则您的函数返回黑色。我相信网站上的原始代码使用整数(我完全不了解Pascal语言)。建议将“Wavelength<=439”更改为“Wavelength<440”。 - Hassedev
2
你说得对!谢谢你指出这个问题 :) 已经纠正了。 - Tarc
重复的RFB到某些频率是预期的吗?(RED): 652 - rgb(255, 0, 0)| 660 - rgb(255, 0, 0)| 692 - rgb(255, 0, 0)| 700 - rgb(255, 0, 0)| ... - Rodrigo Borba

18

概述:

  1. 使用CIE颜色匹配函数将波长转换为XYZ颜色
  2. 将XYZ转换为RGB
  3. 将分量剪裁到 [0..1] 范围内并乘以 255 以适应无符号字节范围。

步骤1和2可能会有所不同。

有几个颜色匹配函数可供选择,可以作为表格或近似解析式使用(由@Tarc和@Haochen Xie建议)。如果需要平滑精确的结果,则最好使用表格。

没有单一的RGB颜色空间。多个转换矩阵和不同类型的伽马校正可能会被使用。

下面是我最近编写的C#代码。它在“CIE 1964标准观察者”表上使用线性插值和sRGB矩阵+伽马校正

static class RgbCalculator {

    const int
         LEN_MIN = 380,
         LEN_MAX = 780,
         LEN_STEP = 5;

    static readonly double[]
        X = {
                0.000160, 0.000662, 0.002362, 0.007242, 0.019110, 0.043400, 0.084736, 0.140638, 0.204492, 0.264737,
                0.314679, 0.357719, 0.383734, 0.386726, 0.370702, 0.342957, 0.302273, 0.254085, 0.195618, 0.132349,
                0.080507, 0.041072, 0.016172, 0.005132, 0.003816, 0.015444, 0.037465, 0.071358, 0.117749, 0.172953,
                0.236491, 0.304213, 0.376772, 0.451584, 0.529826, 0.616053, 0.705224, 0.793832, 0.878655, 0.951162,
                1.014160, 1.074300, 1.118520, 1.134300, 1.123990, 1.089100, 1.030480, 0.950740, 0.856297, 0.754930,
                0.647467, 0.535110, 0.431567, 0.343690, 0.268329, 0.204300, 0.152568, 0.112210, 0.081261, 0.057930,
                0.040851, 0.028623, 0.019941, 0.013842, 0.009577, 0.006605, 0.004553, 0.003145, 0.002175, 0.001506,
                0.001045, 0.000727, 0.000508, 0.000356, 0.000251, 0.000178, 0.000126, 0.000090, 0.000065, 0.000046,
                0.000033
            },

        Y = {
                0.000017, 0.000072, 0.000253, 0.000769, 0.002004, 0.004509, 0.008756, 0.014456, 0.021391, 0.029497,
                0.038676, 0.049602, 0.062077, 0.074704, 0.089456, 0.106256, 0.128201, 0.152761, 0.185190, 0.219940,
                0.253589, 0.297665, 0.339133, 0.395379, 0.460777, 0.531360, 0.606741, 0.685660, 0.761757, 0.823330,
                0.875211, 0.923810, 0.961988, 0.982200, 0.991761, 0.999110, 0.997340, 0.982380, 0.955552, 0.915175,
                0.868934, 0.825623, 0.777405, 0.720353, 0.658341, 0.593878, 0.527963, 0.461834, 0.398057, 0.339554,
                0.283493, 0.228254, 0.179828, 0.140211, 0.107633, 0.081187, 0.060281, 0.044096, 0.031800, 0.022602,
                0.015905, 0.011130, 0.007749, 0.005375, 0.003718, 0.002565, 0.001768, 0.001222, 0.000846, 0.000586,
                0.000407, 0.000284, 0.000199, 0.000140, 0.000098, 0.000070, 0.000050, 0.000036, 0.000025, 0.000018,
                0.000013
            },

        Z = {
                0.000705, 0.002928, 0.010482, 0.032344, 0.086011, 0.197120, 0.389366, 0.656760, 0.972542, 1.282500,
                1.553480, 1.798500, 1.967280, 2.027300, 1.994800, 1.900700, 1.745370, 1.554900, 1.317560, 1.030200,
                0.772125, 0.570060, 0.415254, 0.302356, 0.218502, 0.159249, 0.112044, 0.082248, 0.060709, 0.043050,
                0.030451, 0.020584, 0.013676, 0.007918, 0.003988, 0.001091, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
                0.000000
            };

    static readonly double[]
        MATRIX_SRGB_D65 = {
             3.2404542, -1.5371385, -0.4985314,
            -0.9692660,  1.8760108,  0.0415560,
             0.0556434, -0.2040259,  1.0572252
        };

    public static byte[] Calc(double len) {
        if(len < LEN_MIN || len > LEN_MAX)
            return new byte[3];

        len -= LEN_MIN;
        var index = (int)Math.Floor(len / LEN_STEP);
        var offset = len - LEN_STEP * index;

        var x = Interpolate(X, index, offset);
        var y = Interpolate(Y, index, offset);
        var z = Interpolate(Z, index, offset);

        var m = MATRIX_SRGB_D65;

        var r = m[0] * x + m[1] * y + m[2] * z;
        var g = m[3] * x + m[4] * y + m[5] * z;
        var b = m[6] * x + m[7] * y + m[8] * z;

        r = Clip(GammaCorrect_sRGB(r));
        g = Clip(GammaCorrect_sRGB(g));
        b = Clip(GammaCorrect_sRGB(b));

        return new[] { 
            (byte)(255 * r),
            (byte)(255 * g),
            (byte)(255 * b)
        };
    }

    static double Interpolate(double[] values, int index, double offset) {
        if(offset == 0)
            return values[index];

        var x0 = index * LEN_STEP;
        var x1 = x0 + LEN_STEP;
        var y0 = values[index];
        var y1 = values[1 + index];

        return y0 + offset * (y1 - y0) / (x1 - x0);
    }

    static double GammaCorrect_sRGB(double c) {
        if(c <= 0.0031308)
            return 12.92 * c;

        var a = 0.055;
        return (1 + a) * Math.Pow(c, 1 / 2.4) - a;
    }

    static double Clip(double c) {
        if(c < 0)
            return 0;
        if(c > 1)
            return 1;
        return c;
    }
}

400-700纳米范围的结果如下:

enter image description here


这对我来说真的很有趣。我有一个想法,可以使用类似的东西来给出正常的响应,但使用WXYZ响应来模仿四色视觉者的响应,他们有第四个锥体,它对任何其他三种正常锥体类型的频率都远离。这可能让我推断出他们所看到的差异。请注意,他们并没有看到新颜色,而是混合的光线(总和),例如,对于我们大多数人来说,混合成特定黄色的光线似乎与特定频率的黄色完全相同,但对于他们来说,光线根本不会混合成那种黄色。 - phorgan1
当然,对于特定的RGB颜色,可以有很多方法来得到它。叶子的绿色可能来自过滤除了绿色以外的所有颜色,或者绿色可能被过滤掉了,但是纳米特性可能会导致蓝色和黄色反射并且看起来与绿色相同。如果给定一张图像而不是光线,是否有任何方法可以区分它们? - phorgan1

11

尽管这是一个老问题,并已经得到了一些好的答案,但当我尝试在我的应用程序中实现这种转换功能时,我对此处列出的算法不满意,于是进行了自己的研究,取得了一些好的结果。因此,我要发布一个新的答案。

经过一些研究,我发现了这篇论文:Simple Analytic Approximations to the CIE XYZ Color Matching Functions,并尝试采用其中介绍的多峰分段高斯拟合算法来实现我的应用程序。该论文仅描述了将波长转换为相应的XYZ值的函数,因此我实现了一个函数,在sRGB颜色空间中将XYZ转换为RGB,并将它们结合在一起。结果非常出色,值得分享:

/**
 * Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
 * monitor
 *
 * @param wavelength wavelength in nm
 * @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
 * 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
 */
public static int wavelengthToRGB(double wavelength){
    double[] xyz = cie1931WavelengthToXYZFit(wavelength);
    double[] rgb = srgbXYZ2RGB(xyz);

    int c = 0;
    c |= (((int) (rgb[0] * 0xFF)) & 0xFF) << 16;
    c |= (((int) (rgb[1] * 0xFF)) & 0xFF) << 8;
    c |= (((int) (rgb[2] * 0xFF)) & 0xFF) << 0;

    return c;
}

/**
 * Convert XYZ to RGB in the sRGB color space
 * <p>
 * The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
 * follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
 * Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
 *
 * @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
 * @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
 */
public static double[] srgbXYZ2RGB(double[] xyz) {
    double x = xyz[0];
    double y = xyz[1];
    double z = xyz[2];

    double rl =  3.2406255 * x + -1.537208  * y + -0.4986286 * z;
    double gl = -0.9689307 * x +  1.8757561 * y +  0.0415175 * z;
    double bl =  0.0557101 * x + -0.2040211 * y +  1.0569959 * z;

    return new double[] {
            srgbXYZ2RGBPostprocess(rl),
            srgbXYZ2RGBPostprocess(gl),
            srgbXYZ2RGBPostprocess(bl)
    };
}

/**
 * helper function for {@link #srgbXYZ2RGB(double[])}
 */
private static double srgbXYZ2RGBPostprocess(double c) {
    // clip if c is out of range
    c = c > 1 ? 1 : (c < 0 ? 0 : c);

    // apply the color component transfer function
    c = c <= 0.0031308 ? c * 12.92 : 1.055 * Math.pow(c, 1. / 2.4) - 0.055;

    return c;
}

/**
 * A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
 * code here is adopted from the Listing 1 of the paper authored by Wyman et al.
 * <p>
 * Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
 * Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
 *
 * @param wavelength wavelength in nm
 * @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
 */
public static double[] cie1931WavelengthToXYZFit(double wavelength) {
    double wave = wavelength;

    double x;
    {
        double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
        double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
        double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);

        x =   0.362 * Math.exp(-0.5 * t1 * t1)
            + 1.056 * Math.exp(-0.5 * t2 * t2)
            - 0.065 * Math.exp(-0.5 * t3 * t3);
    }

    double y;
    {
        double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
        double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);

        y =   0.821 * Math.exp(-0.5 * t1 * t1)
            + 0.286 * Math.exp(-0.5 * t2 * t2);
    }

    double z;
    {
        double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
        double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);

        z =   1.217 * Math.exp(-0.5 * t1 * t1)
            + 0.681 * Math.exp(-0.5 * t2 * t2);
    }

    return new double[] { x, y, z };
}

我的代码是用Java 8编写的,但是将其移植到较低版本的Java和其他语言应该不难。


1
@Baddack,你说得对:这只是一种花哨的方式来对计算出的值进行进一步的转换。我记不清了,但我认为它首先应用伽马校正,然后截断超出范围的值。也许我应该把它放在一个单独的方法中,但当我编写它时,我实际上并没有考虑共享代码,而且这是一个我需要这种转换的玩具项目。 - Haochen Xie
1
@Baddack,我很高兴代码对你有所帮助。如果您不介意的话,能否给它点个赞,这样它就有可能帮助更多的人呢? - Haochen Xie
1
@Baddack 看起来在 C# 中,Math.pow 就是 Math.Pow。请参考 https://msdn.microsoft.com/zh-cn/library/system.math.pow.aspx。 - Haochen Xie
3
@Ruslan,由于该算法是对CIE标准观察者的分析适配(可以认为是“精确”模型),因此存在误差。但从论文中看,在第7页的图1中(将(d)与(f)进行比较),这种方法提供了相当接近的近似值。特别是如果你看 (f),你会发现即使在标准模型中也有一条蓝色的线。此外,纯光源的颜色感知因人而异,因此这种水平的误差可能是可以忽略不计的。 - Haochen Xie
1
@Ruslan 我想你在谈论函数 #srgbXYZ2RGBPostprocess(..)。请看一下我在函数 #srgbXYZ2RGB(..) 评论中提供的参考资料,我只是按照参考资料给出的算法进行操作。 - Haochen Xie
显示剩余15条评论

7

您在谈论将波长转换为RGB值。

请看这里,可能会回答您的问题。他们有一个用于执行此操作的实用程序,同时还有一些解释。

WaveLengthToRGB


1
只是读了同一页的内容“波长和RGB值之间没有唯一的一对一映射” - 所以你只能使用查找表和启发式算法。首先,我会考虑从HSV到RGB的转换,因为“色相”范围从蓝色到红色。可能会有轻微的偏移,因为在RGB领域中,红色+蓝色=紫色,而紫色具有最短的可见波长。 - whatnick
3
这不是基本上一样吗?频率=光波长/速度 - Mauricio Scheffer
1
@Mauricio Scheffer 是的,完全一样。 - Joseph Gordon
这个布鲁顿算法更注重美感而非实际应用。 - mykhal
10
强烈不同意。考虑一种在空气中发出的绿色光线,波长为400nm,击中水面后在水中传播。水的折射系数为1.33,因此在水中的光线波长现在是300nm,显然并不改变其颜色。影响光线颜色的是频率而不是波长。在相同的物质中(真空、空气、水),频率(颜色)对应着相同的波长。但在不同介质中则不同。 - mbaitoff
这是来自 https://dev59.com/bnM_5IYBdhLWcg3wNwUv#14917481 的相同代码。 - Dominic Cerisano

3
我对已知的色相值和频率进行了线性拟合(因为红色和紫色的频率范围太广,会影响结果),得到了一个大致的转换公式。

它如下所示:
频率(以 THz 为单位)= 474 + (3/4)×(色相角度(以度为单位))

我尝试搜索一下是否有人提出过这个公式,但截至2010年5月,我没有找到任何相关资料。


3

我想我可以用正式的回答来跟进我的评论。最好的选择是使用HSV颜色空间 - 虽然色调代表波长,但不是一对一的比较。


1
您提供的链接已失效。 - Ruslan

2
方法1
这是经过清理和测试的C++11版本,基于@haochen-xie的代码。我还添加了一个函数,将值0转换为可用于此方法的可见光谱波长1。您可以将以下内容放在一个头文件中,并且不需要任何依赖即可使用。此版本将在此处维护。
#ifndef common_utils_OnlineStats_hpp
#define common_utils_OnlineStats_hpp

namespace common_utils {

class ColorUtils {
public:

    static void valToRGB(double val0To1, unsigned char& r, unsigned char& g, unsigned char& b)
    {
        //actual visible spectrum is 375 to 725 but outside of 400-700 things become too dark
        wavelengthToRGB(val0To1 * (700 - 400) + 400, r, g, b);
    }

    /**
    * Convert a wavelength in the visible light spectrum to a RGB color value that is suitable to be displayed on a
    * monitor
    *
    * @param wavelength wavelength in nm
    * @return RGB color encoded in int. each color is represented with 8 bits and has a layout of
    * 00000000RRRRRRRRGGGGGGGGBBBBBBBB where MSB is at the leftmost
    */
    static void wavelengthToRGB(double wavelength, unsigned char& r, unsigned char& g, unsigned char& b) {
        double x, y, z;
        cie1931WavelengthToXYZFit(wavelength, x, y, z);
        double dr, dg, db;
        srgbXYZ2RGB(x, y, z, dr, dg, db);

        r = static_cast<unsigned char>(static_cast<int>(dr * 0xFF) & 0xFF);
        g = static_cast<unsigned char>(static_cast<int>(dg * 0xFF) & 0xFF);
        b = static_cast<unsigned char>(static_cast<int>(db * 0xFF) & 0xFF);
    }

    /**
    * Convert XYZ to RGB in the sRGB color space
    * <p>
    * The conversion matrix and color component transfer function is taken from http://www.color.org/srgb.pdf, which
    * follows the International Electrotechnical Commission standard IEC 61966-2-1 "Multimedia systems and equipment -
    * Colour measurement and management - Part 2-1: Colour management - Default RGB colour space - sRGB"
    *
    * @param xyz XYZ values in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
    * @return RGB values in a double array, in the order of R, G, B. each value in the range of [0.0, 1.0]
    */
    static void srgbXYZ2RGB(double x, double y, double z, double& r, double& g, double& b) {
        double rl = 3.2406255 * x + -1.537208  * y + -0.4986286 * z;
        double gl = -0.9689307 * x + 1.8757561 * y + 0.0415175 * z;
        double bl = 0.0557101 * x + -0.2040211 * y + 1.0569959 * z;

        r = srgbXYZ2RGBPostprocess(rl);
        g = srgbXYZ2RGBPostprocess(gl);
        b = srgbXYZ2RGBPostprocess(bl);
    }

    /**
    * helper function for {@link #srgbXYZ2RGB(double[])}
    */
    static double srgbXYZ2RGBPostprocess(double c) {
        // clip if c is out of range
        c = c > 1 ? 1 : (c < 0 ? 0 : c);

        // apply the color component transfer function
        c = c <= 0.0031308 ? c * 12.92 : 1.055 * std::pow(c, 1. / 2.4) - 0.055;

        return c;
    }

    /**
    * A multi-lobe, piecewise Gaussian fit of CIE 1931 XYZ Color Matching Functions by Wyman el al. from Nvidia. The
    * code here is adopted from the Listing 1 of the paper authored by Wyman et al.
    * <p>
    * Reference: Chris Wyman, Peter-Pike Sloan, and Peter Shirley, Simple Analytic Approximations to the CIE XYZ Color
    * Matching Functions, Journal of Computer Graphics Techniques (JCGT), vol. 2, no. 2, 1-11, 2013.
    *
    * @param wavelength wavelength in nm
    * @return XYZ in a double array in the order of X, Y, Z. each value in the range of [0.0, 1.0]
    */
    static void cie1931WavelengthToXYZFit(double wavelength, double& x, double& y, double& z) {
        double wave = wavelength;

        {
            double t1 = (wave - 442.0) * ((wave < 442.0) ? 0.0624 : 0.0374);
            double t2 = (wave - 599.8) * ((wave < 599.8) ? 0.0264 : 0.0323);
            double t3 = (wave - 501.1) * ((wave < 501.1) ? 0.0490 : 0.0382);

            x = 0.362 * std::exp(-0.5 * t1 * t1)
                + 1.056 * std::exp(-0.5 * t2 * t2)
                - 0.065 * std::exp(-0.5 * t3 * t3);
        }

        {
            double t1 = (wave - 568.8) * ((wave < 568.8) ? 0.0213 : 0.0247);
            double t2 = (wave - 530.9) * ((wave < 530.9) ? 0.0613 : 0.0322);

            y = 0.821 * std::exp(-0.5 * t1 * t1)
                + 0.286 * std::exp(-0.5 * t2 * t2);
        }

        {
            double t1 = (wave - 437.0) * ((wave < 437.0) ? 0.0845 : 0.0278);
            double t2 = (wave - 459.0) * ((wave < 459.0) ? 0.0385 : 0.0725);

            z = 1.217 * std::exp(-0.5 * t1 * t1)
                + 0.681 * std::exp(-0.5 * t2 * t2);
        }
    }

};

} //namespace

#endif

波长从375nm到725nm的颜色分布如下:

enter image description here

这种方法的一个问题是它只在400-700nm之间工作,而在此范围之外它会急剧降至黑色。另一个问题是蓝色更窄。
为了比较,下面是来自maxmax.com Vision FAQ的颜色:

enter image description here

我使用这个工具来可视化深度图,其中每个像素代表以米为单位的深度值,它看起来像下面这样:

enter image description here

第二种方法:
这是由Aeash Partow编写的bitmap_image单文件头文件库的一部分实现:
inline rgb_t convert_wave_length_nm_to_rgb(const double wave_length_nm)
{
   // Credits: Dan Bruton http://www.physics.sfasu.edu/astro/color.html
   double red   = 0.0;
   double green = 0.0;
   double blue  = 0.0;

   if ((380.0 <= wave_length_nm) && (wave_length_nm <= 439.0))
   {
      red   = -(wave_length_nm - 440.0) / (440.0 - 380.0);
      green = 0.0;
      blue  = 1.0;
   }
   else if ((440.0 <= wave_length_nm) && (wave_length_nm <= 489.0))
   {
      red   = 0.0;
      green = (wave_length_nm - 440.0) / (490.0 - 440.0);
      blue  = 1.0;
   }
   else if ((490.0 <= wave_length_nm) && (wave_length_nm <= 509.0))
   {
      red   = 0.0;
      green = 1.0;
      blue  = -(wave_length_nm - 510.0) / (510.0 - 490.0);
   }
   else if ((510.0 <= wave_length_nm) && (wave_length_nm <= 579.0))
   {
      red   = (wave_length_nm - 510.0) / (580.0 - 510.0);
      green = 1.0;
      blue  = 0.0;
   }
   else if ((580.0 <= wave_length_nm) && (wave_length_nm <= 644.0))
   {
      red   = 1.0;
      green = -(wave_length_nm - 645.0) / (645.0 - 580.0);
      blue  = 0.0;
   }
   else if ((645.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
   {
      red   = 1.0;
      green = 0.0;
      blue  = 0.0;
   }

   double factor = 0.0;

   if ((380.0 <= wave_length_nm) && (wave_length_nm <= 419.0))
      factor = 0.3 + 0.7 * (wave_length_nm - 380.0) / (420.0 - 380.0);
   else if ((420.0 <= wave_length_nm) && (wave_length_nm <= 700.0))
      factor = 1.0;
   else if ((701.0 <= wave_length_nm) && (wave_length_nm <= 780.0))
      factor = 0.3 + 0.7 * (780.0 - wave_length_nm) / (780.0 - 700.0);
   else
      factor = 0.0;

   rgb_t result;

   const double gamma         =   0.8;
   const double intensity_max = 255.0;

   #define round(d) std::floor(d + 0.5)

   result.red   = static_cast<unsigned char>((red   == 0.0) ? red   : round(intensity_max * std::pow(red   * factor, gamma)));
   result.green = static_cast<unsigned char>((green == 0.0) ? green : round(intensity_max * std::pow(green * factor, gamma)));
   result.blue  = static_cast<unsigned char>((blue  == 0.0) ? blue  : round(intensity_max * std::pow(blue  * factor, gamma)));

   #undef round

   return result;
}

波长从375-725nm的图形如下所示:

enter image description here

所以这个更适用于400-725纳米。当我将与方法1相同的深度图像可视化时,我得到了以下结果。有一个明显的问题,那些黑线表示代码中存在一些小错误,我没有深入研究。此外,紫色在这种方法中稍微更窄,导致远处物体的对比度较低。

enter image description here


0

将波长的CIExy投影到D65白点上,再映射到sRGB色域中

#!/usr/bin/ghci
ångstrømsfromTHz terahertz = 2997924.58 / terahertz
tristimulusXYZfromÅngstrøms å=map(sum.map(stimulus))[
 [[1056,5998,379,310],[362,4420,160,267],[-65,5011,204,262]],
 [[821,5688,469,405],[286,5309,163,311]],
 [[1217,4370,118,360],[681,4590,260,138]]]
 where stimulus[ω,μ,ς,σ]=ω/1000*exp(-((å-μ)/if å<μ then ς else σ)^2/2)

standardRGBfromTristimulusXYZ xyz=
 map(gamma.sum.zipWith(*)(gamutConfine xyz))[
 [3.2406,-1.5372,-0.4986],[-0.9689,1.8758,0.0415],[0.0557,-0.2040,1.057]]
gamma u=if u<=0.0031308 then 12.92*u else (u**(5/12)*211-11)/200
[red,green,blue,black]=
 [[0.64,0.33],[0.3,0.6],[0.15,0.06],[0.3127,0.3290,0]]
ciexyYfromXYZ xyz=if xyz!!1==0 then black else map(/sum xyz)xyz
cieXYZfromxyY[x,y,l]=if y==0 then black else[x*l/y,l,(1-x-y)*l/y]
gamutConfine xyz=last$xyz:[cieXYZfromxyY[x0+t*(x1-x0),y0+t*(y1-y0),xyz!!1]|
 x0:y0:_<-[black],x1:y1:_<-[ciexyYfromXYZ xyz],i<-[0..2],
 [x2,y2]:[x3,y3]:_<-[drop i[red,green,blue,red]],
 det<-[(x0-x1)*(y2-y3)-(y0-y1)*(x2-x3)],
 t <-[((x0-x2)*(y2-y3)-(y0-y2)*(x2-x3))/det|det/=0],0<=t,t<=1]

sRGBfromÅ=standardRGBfromTristimulusXYZ.tristimulusXYZfromÅngstrøms
x s rgb=concat["\ESC[48;2;",
               intercalate";"$map(show.(17*).round.(15*).max 0.min 1)rgb,
               "m",s,"\ESC[49m"]
spectrum=concatMap(x" ".sRGBfromÅ)$takeWhile(<7000)$iterate(+60)4000
main=putStrLn spectrum

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接