一个典型的二维数组路径查找最快的方法是什么?

3
期望的结果应该像这样。
0 0 0 1 0 * * * 0 0 0 0
0 0 0 0 1 * 1 * * 0 0 0
0 0 1 1 1 * 1 0 * 0 0 0
0 * * 0 1 * 1 0 * 0 0 0
0 * 1 1 1 * 1 0 * * 0 0
0 * 0 1 1 * 1 0 0 * 0 0
0 * 0 0 1 * 1 0 0 * 0 0
0 * * * * * 1 0 0 * * 0
0 0 0 0 0 0 1 0 0 0 * 0
0 0 0 0 0 0 1 0 0 0 * 0
0 0 0 0 0 0 1 0 0 0 * 0
0 0 0 0 0 0 1 0 0 0 * *

您只能朝4个方向行走,不能朝45度方向行走,我正在使用A*算法,在原始算法的基础上做了一些修改以更适应我的情况。

这是我的Python代码:

我运行了它1000次。

花费时间为1.4秒~1.5秒。

def astar(m,startp,endp):
    w,h = 12,12
    sx,sy = startp
    ex,ey = endp
    #[parent node, x, y,g,f]
    node = [None,sx,sy,0,abs(ex-sx)+abs(ey-sy)] 
    closeList = [node]
    createdList = {}
    createdList[sy*w+sx] = node
    k=0
    while(closeList):
        node = closeList.pop(0)
        x = node[1]
        y = node[2]
        l = node[3]+1
        k+=1
        #find neighbours 
        #make the path not too strange
        if k&1:
            neighbours = ((x,y+1),(x,y-1),(x+1,y),(x-1,y))
        else:
            neighbours = ((x+1,y),(x-1,y),(x,y+1),(x,y-1))
        for nx,ny in neighbours:
            if nx==ex and ny==ey:
                path = [(ex,ey)]
                while node:
                    path.append((node[1],node[2]))
                    node = node[0]
                return list(reversed(path))            
            if 0<=nx<w and 0<=ny<h and m[ny][nx]==0:
                if ny*w+nx not in createdList:
                    nn = (node,nx,ny,l,l+abs(nx-ex)+abs(ny-ey))
                    createdList[ny*w+nx] = nn
                    #adding to closelist ,using binary heap
                    nni = len(closeList)
                    closeList.append(nn)
                    while nni:
                        i = (nni-1)>>1
                        if closeList[i][4]>nn[4]:
                            closeList[i],closeList[nni] = nn,closeList[i]
                            nni = i
                        else:
                            break


    return 'not found'

m = ((0,0,0,1,0,0,0,0,0,0,0,0),
     (0,0,0,0,1,0,1,0,0,0,0,0),
     (0,0,1,1,1,0,1,0,0,0,0,0),
     (0,0,0,0,1,0,1,0,0,0,0,0),
     (0,0,1,1,1,0,1,0,0,0,0,0),
     (0,0,0,1,1,0,1,0,0,0,0,0),
     (0,0,0,0,1,0,1,0,0,0,0,0),
     (0,0,0,0,0,0,1,0,0,0,0,0),
     (0,0,0,0,0,0,1,0,0,0,0,0),
     (0,0,0,0,0,0,1,0,0,0,0,0),
     (0,0,0,0,0,0,1,0,0,0,0,0),
     (0,0,0,0,0,0,1,0,0,0,0,0)
     )

t1 = time.time()
for i in range(1000):
    result = astar(m,(2,3),(11,11))
print(time.time()-t1) 
cm = [list(x[:]) for x in m]


if isinstance(result, list):
    for y in range(len(m)):
        my = m[y]
        for x in range(len(my)):
            for px,py in result:
                if px==x and py ==y:
                    cm[y][x] = '*'

for my in cm:
    print(' '.join([str(x) for x in my]))

exit(0)

告诉我,如果你现在知道更快或最快的方法,请告诉我。

不是答案,但你可能想将其与你的性能进行比较:http://networkx.lanl.gov/实现最短路径。 - nair.ashvin
1个回答

1

A*算法是一种针对已知图形(所有边缘都已知,您可以使用某些可接受的启发式方法估计到目标的距离)非常快速的算法。

有一些改进A*算法的方法,可以使其更快,但代价是不太优化。最常见的是A*-Epsilon(也称为有界A*)。其想法是允许算法开发节点(1 + epsilon)* MIN(其中常规A*仅开发MIN)。结果(当然取决于epsilon值)通常是更快的解决方案,但找到的路径最多为(1 + epsilon)* OPTIMAL


另一个可能的优化是从一端开始进行A*算法 - 并且同时从另一端(“出口”)进行BFS算法。这种技术被称为双向搜索,通常是在无权图中提高性能的好方法,尤其是在问题只有一个最终状态时。我曾经在这个主题中尝试过解释双向搜索的原理。


网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接