为什么在未排序的列表中过滤比在已排序的列表中过滤要快

12

我一直在使用Java 8的流式API,并决定对stream()parallelStream()流进行微基准测试。如预期的那样,parallelStream()流速度是stream()流的两倍,但出现了另一个问题 - 如果我在传递数据到filter之前对其进行排序,那么filter->map->collect结果所需的时间将比传递未排序的列表需要的时间多5-8倍。

未排序

(Stream) Elapsed time [ns] : 53733996 (53 ms)
(ParallelStream) Elapsed time [ns] : 25901907 (25 ms)

排序

(Stream) Elapsed time [ns] : 336976149 (336 ms)
(ParallelStream) Elapsed time [ns] : 204781387 (204 ms)

以下是代码

package com.github.svetlinzarev.playground.javalang.lambda;

import static java.lang.Long.valueOf;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import java.util.stream.Collectors;

import com.github.svetlinzarev.playground.util.time.Stopwatch;

public class MyFirstLambda {
    private static final int ELEMENTS = 1024 * 1024 * 16;

    private static List<Integer> getRandom(int nElements) {
        final Random random = new Random();
        final List<Integer> data = new ArrayList<Integer>(nElements);
        for (int i = 0; i < MyFirstLambda.ELEMENTS; i++) {
            data.add(random.nextInt(MyFirstLambda.ELEMENTS));
        }
        return data;
    }

    private static void benchStream(List<Integer> data) {
        final Stopwatch stopwatch = new Stopwatch();
        final List<Long> smallLongs = data.stream()
                .filter(i -> i.intValue() < 16)
                .map(Long::valueOf)
                .collect(Collectors.toList());
        stopwatch.log("Stream");
        System.out.println(smallLongs);
    }

    private static void benchParallelStream(List<Integer> data) {
        final Stopwatch stopwatch = new Stopwatch();
        final List<Long> smallLongs = data.parallelStream()
                .filter(i -> i.intValue() < 16)
                .map(Long::valueOf)
                .collect(Collectors.toList());
        stopwatch.log("ParallelStream");
        System.out.println(smallLongs);
    }

    public static void main(String[] args) {
        final List<Integer> data = MyFirstLambda.getRandom(MyFirstLambda.ELEMENTS);
        // Collections.sort(data, (first, second) -> first.compareTo(second)); //<- Sort the data

        MyFirstLambda.benchStream(data);
        MyFirstLambda.benchParallelStream(data);

        MyFirstLambda.benchStream(data);
        MyFirstLambda.benchParallelStream(data);

        MyFirstLambda.benchStream(data);
        MyFirstLambda.benchParallelStream(data);

        MyFirstLambda.benchStream(data);
        MyFirstLambda.benchParallelStream(data);

        MyFirstLambda.benchStream(data);
        MyFirstLambda.benchParallelStream(data);
    }
}

更新

这里有一个更好的基准代码。

package com.github.svetlinzarev.playground.javalang.lambda;

import static java.lang.Long.valueOf;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
import java.util.stream.Collectors;

import com.github.svetlinzarev.playground.util.time.Stopwatch;

public class MyFirstLambda {
    private static final int ELEMENTS = 1024 * 1024 * 10;
    private static final int SMALLER_THAN = 16;
    private static final int WARM_UP_ITERRATIONS = 1000;

    private static List<Integer> getRandom(int nElements) {
        final Random random = new Random();
        final List<Integer> data = new ArrayList<Integer>(nElements);
        for (int i = 0; i < MyFirstLambda.ELEMENTS; i++) {
            data.add(random.nextInt(MyFirstLambda.ELEMENTS));
        }
        return data;
    }

    private static List<Long> filterStream(List<Integer> data) {
        final List<Long> smallLongs = data.stream()
                .filter(i -> i.intValue() < MyFirstLambda.SMALLER_THAN)
                .map(Long::valueOf)
                .collect(Collectors.toList());
        return smallLongs;
    }

    private static List<Long> filterParallelStream(List<Integer> data) {
        final List<Long> smallLongs = data.parallelStream()
                .filter(i -> i.intValue() < MyFirstLambda.SMALLER_THAN)
                .map(Long::valueOf)
                .collect(Collectors.toList());
        return smallLongs;
    }

    private static long filterAndCount(List<Integer> data) {
        return data.stream()
                .filter(i -> i.intValue() < MyFirstLambda.SMALLER_THAN)
                .count();
    }

    private static long filterAndCountinParallel(List<Integer> data) {
        return data.parallelStream()
                .filter(i -> i.intValue() < MyFirstLambda.SMALLER_THAN)
                .count();
    }

    private static void warmUp(List<Integer> data) {
        for (int i = 0; i < MyFirstLambda.WARM_UP_ITERRATIONS; i++) {
            MyFirstLambda.filterStream(data);
            MyFirstLambda.filterParallelStream(data);
            MyFirstLambda.filterAndCount(data);
            MyFirstLambda.filterAndCountinParallel(data);
        }
    }

    private static void benchmark(List<Integer> data, String message) throws InterruptedException {
        System.gc();
        Thread.sleep(1000); // Give it enough time to complete the GC cycle

        final Stopwatch stopwatch = new Stopwatch();
        MyFirstLambda.filterStream(data);
        stopwatch.log("Stream: " + message);

        System.gc();
        Thread.sleep(1000); // Give it enough time to complete the GC cycle

        stopwatch.reset();
        MyFirstLambda.filterParallelStream(data);
        stopwatch.log("ParallelStream: " + message);

        System.gc();
        Thread.sleep(1000); // Give it enough time to complete the GC cycle

        stopwatch.reset();
        MyFirstLambda.filterAndCount(data);
        stopwatch.log("Count: " + message);

        System.gc();
        Thread.sleep(1000); // Give it enough time to complete the GC cycle

        stopwatch.reset();
        MyFirstLambda.filterAndCount(data);
        stopwatch.log("Count in parallel: " + message);
    }

    public static void main(String[] args) throws InterruptedException {
        final List<Integer> data = MyFirstLambda.getRandom(MyFirstLambda.ELEMENTS);

        MyFirstLambda.warmUp(data);
        MyFirstLambda.benchmark(data, "UNSORTED");

        Collections.sort(data, (first, second) -> first.compareTo(second));
        MyFirstLambda.benchmark(data, "SORTED");

        Collections.sort(data, (first, second) -> second.compareTo(first));
        MyFirstLambda.benchmark(data, "IN REVERSE ORDER");

    }
}

再次看来,结果相似:

   16:09:20.470 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Stream: UNSORTED) Elapsed time [ns] : 66812263 (66 ms)
16:09:22.149 [main] INFO  c.g.s.playground.util.time.Stopwatch - (ParallelStream: UNSORTED) Elapsed time [ns] : 39580682 (39 ms)
16:09:23.875 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count: UNSORTED) Elapsed time [ns] : 97852866 (97 ms)
16:09:25.537 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count in parallel: UNSORTED) Elapsed time [ns] : 94884189 (94 ms)
16:09:35.608 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Stream: SORTED) Elapsed time [ns] : 361717676 (361 ms)
16:09:38.439 [main] INFO  c.g.s.playground.util.time.Stopwatch - (ParallelStream: SORTED) Elapsed time [ns] : 150115808 (150 ms)
16:09:41.308 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count: SORTED) Elapsed time [ns] : 338335743 (338 ms)
16:09:44.209 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count in parallel: SORTED) Elapsed time [ns] : 370968432 (370 ms)
16:09:50.693 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Stream: IN REVERSE ORDER) Elapsed time [ns] : 352036140 (352 ms)
16:09:53.323 [main] INFO  c.g.s.playground.util.time.Stopwatch - (ParallelStream: IN REVERSE ORDER) Elapsed time [ns] : 151044664 (151 ms)
16:09:56.159 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count: IN REVERSE ORDER) Elapsed time [ns] : 359281197 (359 ms)
16:09:58.991 [main] INFO  c.g.s.playground.util.time.Stopwatch - (Count in parallel: IN REVERSE ORDER) Elapsed time [ns] : 353177542 (353 ms)
所以,我的问题是为什么过滤未排序的列表比过滤已排序的列表更快?

2
假设您已经对此基准测试进行了大量迭代,并计算了所提供数字的平均值和标准差。否则,您的数字就是垃圾数据。您知道,PC具有调度程序,因此CPU时间和墙壁(时钟)时间几乎永远不会匹配。 - Stefano Sanfilippo
3
为什么处理已排序的数组比未排序的数组更快?可能重复的问题,为什么处理已排序的数组比未排序的数组更快? - Unix von Bash
1
@Andrei Andrei - 我熟悉这个Stack Overflow问题,这也是我提出这个问题的原因 - 因为它表现出了相反的行为。 - Svetlin Zarev
在倒序排序后,没有任何变化。 - Svetlin Zarev
1
为什么这是一个重复的问题?这个问题是关于缓存未命中,而另一个问题是关于分支预测。 - justhalf
显示剩余7条评论
1个回答

9
当您使用未排序列表时,所有元组都按内存顺序访问。它们在RAM中连续分配。CPU 喜欢顺序访问内存,因为它们可以请求下一个缓存行,以便需要时始终存在。
当您对列表进行排序时,由于您的排序键是随机生成的,因此将其放入随机顺序中。这意味着对元组成员的内存访问是不可预测的。CPU 无法预取内存,并且几乎每次访问元组都会导致缓存未命中。
这是GC内存管理特定优势的一个很好的例子:已一起分配并一起使用的数据结构表现非常出色。它们具有很好的引用局部性。
在这种情况下,来自缓存未命中的惩罚超过了已保存的分支预测惩罚。
此问题的被接受的答案也回答了我的问题:Why is processing a sorted array slower than an unsorted array? 当我创建原始的 List 有序 - 即它的元素在内存中是连续的时候,执行时间没有区别,并且与填充随机数字的未排序版本相同。

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接