不使用递归打印树的每一条叶子路径

7

如何在不使用递归的情况下打印树的每个叶路径。

这是一棵树,不是二叉树。

struct node {
    int data
    std::vector<node*> children;
}

打印出从根节点到叶子节点的所有路径,即以下是一棵树:
  • r:是根节点
  • d、m、n 是 r 的孩子
  • x、y、z 是 d 的孩子
  • m 没有任何孩子
  • o、p 是 n 的孩子
-------------root
------d         m          n
---x  y  z              o  p
结果应为:
root-d-x
root-d-y
root-d-z
root-m
root-n-o
root-n-p
我试图使用非递归方法但失败了。

我相信你可以调整非递归二叉树遍历来适应你的情况。最简单的实现方式是在node中添加一个父节点指针,以达到最小内存开销。请参考非递归中序遍历 - Alexey Frunze
8个回答

11
public static void printAllPathToLeafNonRecursive(Node root) {

    if (root == null) {
        return;
    }

    Queue<Object> q = new LinkedList<Object>();
    q.add(root);
    q.add(root.data + "");

    while(!q.isEmpty()){

        Node head = (Node) q.poll();
        String headPath = (String) q.poll();

        if(head.isLeaf()){
            System.out.println(headPath);
            continue;
        }

        if(head.left!=null){
            String leftStr =  headPath + "->" + head.left.data;
            q.add(head.left);
            q.add(leftStr);
        }

        if(head.right!=null){
            String rightStr =  headPath + "->" + head.right.data;
            q.add(head.right);
            q.add(rightStr);
        }
    }


}

这样做会打印路径上的一些节点吗? - But I'm Not A Wrapper Class
@CyberneticTwerkGuruOrc 不是这样的。看它如何使用队列。它也将字符串推送到队列中,因此不会被路径节点写入。它会被适当地轮询和追加 :) - Swapnil
1
@smihael:对于有超过2个子节点的树,您可以修改上面的解决方案。不要插入head.left和head.right,而是使用:for(int i = 0; i < head.children[i]; i++) { String si = headPath + "->" + head.children[i].data; q.add(head.children[i]); q.add(si); } - Ashok Bijoy Debnath
有点晚了,但我想指出这个算法真的很慢,因为它为每个节点(而不仅仅是叶子节点)复制一个字符串。如果N是节点数,K是叶子节点数,通常的算法运行时间为O(KN),但这个算法的运行时间为O(N^2),在任意非二叉树上这是一个很大的差异。 - i'm a girl

5
这是一种基于栈的先序遍历的Python解决方案,纯粹地打印路径和路径总和。
 class Stack(object): # just for reference
    def __init__(self):
        self.a = []

    def push(self, b):
        self.a.append(b)

    def peek(self):
        return self.a[-1]

    def pop(self):
        return self.a.pop()

    def isEmpty(self):
        return len(self.a) == 0

    def show(self):
        return self.a

 def paths(troot): # you should create your own Tree and supply the root
    current = troot
    s = Stack()
    s.push(current)
    s.push(str(current.key))
    s.push(current.key)

    while not s.isEmpty():
        pathsum = s.pop()
        path = s.pop()
        current = s.pop()

        if not current.left and not current.right:
            print 'path: %s, pathsum: %d' % (path, pathsum)

        if current.right:
            rightstr = path + "->" + str(current.right.key)
            rightpathsum = pathsum * 10 + current.right.key
            s.push(current.right)
            s.push(rightstr)
            s.push(rightpathsum)

        if current.left:
            leftstr = path + "->" + str(current.left.key)
            leftpathsum = pathsum * 10 + current.left.key
            s.push(current.left)
            s.push(leftstr)
            s.push(leftpathsum)

For example, for the following tree:

                          3                                                
                       /   \
                      /     \
                     /       \
                    /         \
                   /           \
                  /             \
                 /               \
                /                 \
              1                       7                        
           /   \                   /   \
          /     \                 /     \
         /       \               /       \
        /         \             /         \
        0           2           5           8            
     /   \       /   \       /   \       /   \
    /     \     /     \     /     \     /     \
   NUL   NUL   NUL   NUL     4     6   NUL     9      

输出结果将是:
    >>> paths()
    path: 3->1->0, pathsum: 310
    path: 3->1->2, pathsum: 312
    path: 3->7->5->4, pathsum: 3754
    path: 3->7->5->6, pathsum: 3756
    path: 3->7->8->9, pathsum: 3789

2

这个策略很简单。向下走,然后向右,最后向上。在每个点上,你都知道下一步该去哪里。

保持一个向量,表示你在树中的当前位置。将其起始点设置为根节点。然后用伪代码表示如下:

while True:
    if not a leaf:
        current_place.push_back(0) // move down one
    else:
        print current path.
        while can't move right:
             if at root:
                 exit()
             current_place.pop_back() //move up one
        current_place[-1] += 1

这些操作将需要函数调用。但它们是循环的函数调用,不是递归的,因此它不是递归。


2
基本上,您需要使用显式堆栈操作来模拟递归函数的行为。 - vgru
@Groo,确切地说。我考虑使用队列,但那样不能按照请求的顺序排列事物。 - btilly
这个算法(虽然缺少一些细节)是更好的选择。 - But I'm Not A Wrapper Class

1
最终,这只是一个图表。有不同类型的图遍历。只需使用带有堆栈的dfs,并打印您没有前向边缘的节点即可。

0
public static void RoottoPathPrint(BinaryTreeNode root) {
    Stack<Object> stack = new Stack<Object>();
    if (root == null)
        return;
    stack.push(root.getData() + "");
    stack.push(root);
    while (!stack.isEmpty()) {
        BinaryTreeNode temp = (BinaryTreeNode) stack.pop();
        String path = (String) stack.pop();

        if (temp.getRight() != null) {
            stack.push(path + temp.getRight().getData());
            stack.push(temp.getRight());
        }
        if (temp.getLeft() != null) {
            stack.push(path + temp.getLeft().getData());
            stack.push(temp.getLeft());
        }
        if (temp.getLeft() == null && temp.getRight() == null) {
            System.out.println(path);
        }
    }
}

这个想法是在遍历树时将路径和节点都记录在单个堆栈中。对象堆栈可以实现此操作。 希望这有所帮助!!


0
private void rootToLeaf(BSTNode root){
    Stack<Map<BSTNode,ArrayList<Integer>>> tmpStack = new Stack<Map<BSTNode,ArrayList<Integer>>>();
    Map<BSTNode,ArrayList<Integer>> tmpMap = new HashMap<BSTNode,ArrayList<Integer>>();
    //List<Integer> tmp_arraylist = new ArrayList<Integer>();
    ArrayList<Integer> tmpList = new ArrayList<Integer>();
    tmpList.add(root.data);
    tmpMap.put(root, tmpList);
    tmpStack.push(tmpMap);
    while(!tmpStack.isEmpty()){
        Map<BSTNode,ArrayList<Integer>> temp_map = tmpStack.pop();
        for(BSTNode node : temp_map.keySet()){
            if(node.getLeft()==null && node.getRight()==null){
                for(int i: temp_map.get(node)){
                    System.out.print(i+" ");
                }
                System.out.println();
            }
            if(node.getRight()!=null){
                ArrayList<Integer> tmp_List = new ArrayList<Integer>();
                for(int i: temp_map.get(node)){
                    tmp_List.add(i);
                }
                tmp_List.add(node.getRight().getData());
                Map<BSTNode,ArrayList<Integer>> tmphashMap = new HashMap<BSTNode,ArrayList<Integer>>();
                tmphashMap.put(node.getRight(), tmp_List);
                tmpStack.push(tmphashMap);
            }
            if(node.getLeft()!=null){
                ArrayList<Integer> tmp_List = new ArrayList<Integer>();
                for(int i: temp_map.get(node)){
                    tmp_List.add(i);
                }
                tmp_List.add(node.getLeft().getData());
                Map<BSTNode,ArrayList<Integer>> tmphashMap = new HashMap<BSTNode,ArrayList<Integer>>();
                tmphashMap.put(node.getLeft(), tmp_List);
                tmpStack.push(tmphashMap);
            }
        }

    }
}

0
public void allPathsToLeafNodesWithPreOrderDFS() {
    Stack<Node> stack = new Stack<> ();
    stack.push (root);
    List<Deque<Integer>> paths = new ArrayList<> ();

    while (!stack.isEmpty ()) {
        Node pop = stack.pop ();
        System.out.print (" " + pop.data);
        if (pop.isLeaf ()) {
            Deque<Integer> path = new ArrayDeque<> ();
            Node current = pop;
            while (current != null) {
                path.add (current.data);
                current = current.parent;
            }
            paths.add (path);
        }
        if (pop.right != null) {
            pop.right.parent = pop;
            stack.push (pop.right);
        }
        if (pop.left != null) {
            pop.left.parent = pop;
            stack.push (pop.left);
        }
    }
    System.out.println ("paths = " + paths);
}

public void allPathsToLeafNodesWithInOrderDFS() {
    Stack<Node> stack = new Stack<> ();
    List<Deque<Integer>> paths = new ArrayList<> ();
    Node current = root;

    while (!stack.isEmpty () || current != null) {
        if (current != null) {
            stack.push (current);
            if (current.left != null) current.left.parent = current;
            current = current.left;
        } else {
            Node pop = stack.pop ();
            System.out.println (" " + pop.data);
            if (pop.isLeaf ()) {
                Deque<Integer> path = new ArrayDeque<> ();
                Node now = pop;
                while (now != null) {
                    path.add (now.data);
                    now = now.parent;
                }
                paths.add (path);
            }
            current = pop.right;
            if (pop.right != null) pop.right.parent = pop;
        }

    }
    System.out.println ("paths = " + paths);
}

public void allPathsToLeafNodesWithBFS (){
    List<Deque<Integer>> paths = new ArrayList<> ();
    Queue<Node> queue = new LinkedList<> ();
    queue.add (root);
    while (!queue.isEmpty ()){
        Node poll = queue.poll ();
        System.out.println ("poll = " + poll);
        if (poll.isLeaf ()){
            Deque<Integer> path = new ArrayDeque<> ();
            Node current = poll;
            while (current != null){
                path.add (current.data);
                current = current.parent;
            }
            paths.add (path);
        }
        if(poll.left != null) {
            poll.left.parent = poll;
            queue.add (poll.left);
        }
        if(poll.right != null) {
            poll.right.parent = poll;
            queue.add (poll.right);
        }
    }
    System.out.println ("paths = " + paths);
}

0
对于 n 叉树 - 基于深度优先搜索和广度优先搜索的路径和求解。
                            100     
                      /    /   \     \
                    1     2     3     4
   /   /   /   /   /                /   \   
 10   11  12  13  14              40    41 
                                 / \
                              400  401


public void traverseDFS(Node root) {
    Stack<Node> s = new Stack<Node>();
    Stack<String> sPath = new Stack<>();
    Stack<Integer> sSum = new Stack<>();
    s.push(root);   sPath.push(root.Id + "");   sSum.push(root.Id);

    while (!s.isEmpty()) {
      // Pop out
      Node head = s.pop();    String headPath = sPath.pop();    Integer headSum = sSum.pop();
      if(head.children == null || head.children.isEmpty()){ //Leaf
        System.out.println(headPath + "(" + headSum+")");
        continue;
      }
      for(Node child : head.children) {
        String path = headPath + "->" + child.Id;
        Integer sum = headSum + child.Id;
        // Push on stack
        s.push(child);    sPath.push(path);   sSum.push(sum);
      }
    }
  }

public static void traverseBFS(Node root) {

    Queue<Node> q = new LinkedList<>();
    Queue<String> qPath = new LinkedList<>();
    Queue<Integer> qSum = new LinkedList<>();
    q.add(root);  qPath.add(root.Id + "");  qSum.add(root.Id);

    while(!q.isEmpty()){
      // Poll the q
      Node head = q.poll();   String headPath = qPath.poll();   Integer headSum = qSum.poll();
      if(head.children == null || head.children.isEmpty()){ //Leaf
        System.out.println(headPath + "(" + headSum+")");
        continue;
      }
      for(Node child : head.children) {
        String path = headPath + "->" + child.Id;
        Integer sum = headSum + child.Id;
        // Add to the q
        q.add(child);   qPath.add(path);    qSum.add(sum);
      }
    }
  }

class Node {
  int Id;
  String Data;
  Node Parent;
  ArrayList<Node> children;

  public Node(int id, String data) {
    Id = id;
    Data = data;
  }
}

输出

-----------Depth FS-------------
100->4->41(145)
100->4->40->401(545)
100->4->40->400(544)
100->3(103)
100->2(102)
100->1->14(115)
100->1->13(114)
100->1->12(113)
100->1->11(112)
100->1->10(111)
-----------BFS-------------
100->2(102)
100->3(103)
100->1->10(111)
100->1->11(112)
100->1->12(113)
100->1->13(114)
100->1->14(115)
100->4->41(145)
100->4->40->400(544)
100->4->40->401(545)

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接