使用ARM NEON指令集对cvtColor进行SIMD优化

10
我正在进行与OpenCV的cvtColor()函数等效的BGR转灰度转换的SIMD优化工作。有一个Intel SSE版本的此函数,我正在参考它。(我的工作基本上是将SSE代码转换为NEON代码。)
我几乎已经完成了代码编写,并可以使用g ++编译,但无法获得正确的输出。是否有人有任何想法,可能出现了什么错误?
我得到的结果(不正确):

my output

我应该得到什么:

properly converted output

这是我的代码:

#include <opencv/cv.hpp>
#include <opencv/highgui.h>
#include <arm_neon.h>
//#include <iostream>

using namespace std;
//using namespace cv;

#define int8x16_to_8x8x2(v) ((int8x8x2_t) { vget_low_s8(v), vget_high_s8(v) })

void cvtBGR2GrayNEON(cv::Mat& src, cv::Mat& dest)
{
  const int size = src.size().area()*src.channels();
  uchar* s = src.ptr<uchar>(0);
  uchar* d = dest.ptr<uchar>(0);

  const int8x16_t mask1 = {0,3,6,9,12,15,1,4,7,10,13,2,5,8,11,14};
  const int8x16_t smask1 = {6,7,8,9,10,0,1,2,3,4,5,11,12,13,14,15};
  const int8x16_t ssmask1 = {11,12,13,14,15,0,1,2,3,4,5,6,7,8,9,10};

  const int8x16_t mask2 = {0,3,6,9,12,15, 2,5,8,11,14,1,4,7,10,13};
  const int8x16_t ssmask2 = {0,1,2,3,4,11,12,13,14,15,5,6,7,8,9,10};

  const int8x16_t bmask1 = {255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0};
  const int8x16_t bmask2 = {255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0};
  const int8x16_t bmask3 = {255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0};
  const int8x16_t bmask4 = {255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0};

  const int shift = 8;
  const int amp = 1<<shift;

  const int16_t _R_ = (int16_t)(amp*0.299);
  const int16_t _G_ = (int16_t)(amp*0.587);
  const int16_t _B_ = (int16_t)(amp*0.114);
  const int16x8_t R = vdupq_n_s16(_R_);
  const int16x8_t G = vdupq_n_s16(_G_);
  const int16x8_t B = vdupq_n_s16(_B_);
  const int8x16_t zero = vdupq_n_s8(0);

  for(int i = 0; i < size; i += 48)
    {
      int8x16_t a = vld1q_s8((int8_t *) s + i);
      int8x16_t b = vld1q_s8((int8_t *) s + i + 16);
      int8x16_t c = vld1q_s8((int8_t *) s + i + 32);

      a = vcombine_s8(vtbl2_s8(int8x16_to_8x8x2(a),vget_low_s8(mask1)),vtbl2_s8(int8x16_to_8x8x2(a),vget_high_s8(mask1)));
      b = vcombine_s8(vtbl2_s8(int8x16_to_8x8x2(b), vget_low_s8(mask2)), vtbl2_s8(int8x16_to_8x8x2(b), vget_high_s8(mask2)));
      c = vcombine_s8(vtbl2_s8(int8x16_to_8x8x2(c), vget_low_s8(mask2)), vtbl2_s8(int8x16_to_8x8x2(c), vget_high_s8(mask2)));

      //BBBBBB
      const int8x16_t aaaa = vbslq_s8(c, vbslq_s8(b, a, bmask1), bmask2);

      a = vcombine_s8(vtbl2_s8(int8x16_to_8x8x2(a), vget_low_s8(smask1)), vtbl2_s8(int8x16_to_8x8x2(a), vget_high_s8(smask1)));
      b = vcombine_s8(vtbl2_s8(int8x16_to_8x8x2(b), vget_low_s8(smask1)), vtbl2_s8(int8x16_to_8x8x2(b), vget_high_s8(smask1)));
      c = vcombine_s8(vtbl2_s8(int8x16_to_8x8x2(c), vget_low_s8(smask1)), vtbl2_s8(int8x16_to_8x8x2(c), vget_high_s8(smask1)));

      //GGGGGG
      const int8x16_t bbbb = vbslq_s8(c, vbslq_s8(b, a, bmask3), bmask2);

      a = vcombine_s8(vtbl2_s8(int8x16_to_8x8x2(a), vget_low_s8(ssmask1)), vtbl2_s8(int8x16_to_8x8x2(a), vget_high_s8(ssmask1)));
      c = vcombine_s8(vtbl2_s8(int8x16_to_8x8x2(c), vget_low_s8(ssmask1)), vtbl2_s8(int8x16_to_8x8x2(c), vget_high_s8(ssmask1)));
      b = vcombine_s8(vtbl2_s8(int8x16_to_8x8x2(b), vget_low_s8(ssmask2)), vtbl2_s8(int8x16_to_8x8x2(b), vget_high_s8(ssmask2)));

      //RRRRRR
      const int8x16_t cccc = vbslq_s8(c, vbslq_s8(b, a, bmask3), bmask4);

      /*
      int8x8x2_t a1 = vzip_s8(vget_high_s8(aaaa), vget_high_s8(zero));
      int8x8x2_t a2 = vzip_s8(vget_low_s8(aaaa), vget_low_s8(zero));
      */

      int8x16_t a1 = aaaa;
      int8x16_t a2 = zero;
      int8x16x2_t temp1 =  vzipq_s8(a1, a2);
      a1 = temp1.val[0];
      a2 = temp1.val[1];
      int16x8_t aa1 = vmulq_s16((int16x8_t)a2, B);
      int16x8_t aa2 = vmulq_s16((int16x8_t)a1, B);

      int8x16_t b1 = bbbb;
      int8x16_t b2 = zero;
      int8x16x2_t temp2 =  vzipq_s8(b1, b2);
      b1 = temp2.val[0];
      b2 = temp2.val[1];
      int16x8_t bb1 = vmulq_s16((int16x8_t)b2, G);
      int16x8_t bb2 = vmulq_s16((int16x8_t)b1, G);

      int8x16_t c1 = cccc;
      int8x16_t c2 = zero;
      int8x16x2_t temp3 =  vzipq_s8(c1, c2);
      c1 = temp3.val[0];
      c2 = temp3.val[1];
      int16x8_t cc1 = vmulq_s16((int16x8_t)c2, R);
      int16x8_t cc2 = vmulq_s16((int16x8_t)c1, R);

      aa1 = vaddq_s16(aa1, bb1);
      aa1 = vaddq_s16(aa1, cc1);
      aa2 = vaddq_s16(aa2, bb2);
      aa2 = vaddq_s16(aa2, cc2);

      const int shift1 = 8;
      aa1 = vshrq_n_s16(aa1, shift1);
      aa2 = vshrq_n_s16(aa2, shift1);

      uint8x8_t aaa1 = vqmovun_s16(aa1);
      uint8x8_t aaa2 = vqmovun_s16(aa2);

      uint8x16_t result = vcombine_u8(aaa1, aaa2);

      vst1q_u8((uint8_t *)(d), result);

      d+=16;
    }    
}

int main() 
{
  cv::Mat src = cv::imread("Lenna.bmp");
  cv::Mat dest(src.rows, src.cols, CV_8UC1);

  cvtBGR2GrayNEON(src, dest);

  cv::imwrite("grey.jpg", dest);

  return 0;
}

这里是等效的SSE代码(来自此处):

void cvtBGR2GraySSEShort(Mat& src, Mat& dest)
{
    const int size = src.size().area()*src.channels();
    uchar* s = src.ptr<uchar>(0);
    uchar* d = dest.ptr<uchar>(0);

    //data structure
    //BGR BGR BGR BGR BGR B
    //GR BGR BGR BGR BGR BG
    //R BGR BGR BGR BGR BGR
    //shuffle to BBBBBBGGGGGRRRRR
    const __m128i mask1 = _mm_setr_epi8(0,3,6,9,12,15,1,4,7,10,13,2,5,8,11,14);
    const __m128i smask1 = _mm_setr_epi8(6,7,8,9,10,0,1,2,3,4,5,11,12,13,14,15);
    const __m128i ssmask1 = _mm_setr_epi8(11,12,13,14,15,0,1,2,3,4,5,6,7,8,9,10);

    //shuffle to GGGGGGBBBBBRRRRR
    const __m128i mask2 = _mm_setr_epi8(0,3,6,9,12,15, 2,5,8,11,14,1,4,7,10,13);
    //const __m128i smask2 = _mm_setr_epi8(6,7,8,9,10,0,1,2,3,4,5,11,12,13,14,15);same as smask1
    const __m128i ssmask2 = _mm_setr_epi8(0,1,2,3,4,11,12,13,14,15,5,6,7,8,9,10);

    //shuffle to RRRRRRGGGGGBBBBB
    //__m128i mask3 = _mm_setr_epi8(0,3,6,9,12,15, 2,5,8,11,14,1,4,7,10,13);//same as mask2
    //const __m128i smask3 = _mm_setr_epi8(6,7,8,9,10,0,1,2,3,4,5,6,7,8,9,10);//same as smask1
    //const __m128i ssmask3 = _mm_setr_epi8(11,12,13,14,15,0,1,2,3,4,5,6,7,8,9,10);//same as ssmask1

    //blend mask
    const __m128i bmask1 = _mm_setr_epi8
        (255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0);

    const __m128i bmask2 = _mm_setr_epi8
        (255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0);

    const __m128i bmask3 = _mm_setr_epi8
        (255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0);

    const __m128i bmask4 = _mm_setr_epi8
        (255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0);  

    const int shift = 8;
    const int amp = 1<<shift;
    const int _R_=(int)(amp*0.299);
    const int _G_=(int)(amp*0.587);
    const int _B_=(int)(amp*0.114);
    const __m128i R = _mm_set1_epi16(_R_);
    const __m128i G = _mm_set1_epi16(_G_);
    const __m128i B = _mm_set1_epi16(_B_);
    const __m128i zero = _mm_setzero_si128();   

    for(int i=0;i<size;i+=48)
    {
        __m128i a = _mm_shuffle_epi8(_mm_load_si128((__m128i*)(s+i)),mask1);
        __m128i b = _mm_shuffle_epi8(_mm_load_si128((__m128i*)(s+i+16)),mask2);
        __m128i c = _mm_shuffle_epi8(_mm_load_si128((__m128i*)(s+i+32)),mask2);
        const __m128i aaaa = _mm_blendv_epi8(c,_mm_blendv_epi8(b,a,bmask1),bmask2);

        a = _mm_shuffle_epi8(a,smask1);
        b = _mm_shuffle_epi8(b,smask1);
        c = _mm_shuffle_epi8(c,smask1);
        const __m128i bbbb =_mm_blendv_epi8(c,_mm_blendv_epi8(b,a,bmask3),bmask2);

        a = _mm_shuffle_epi8(a,ssmask1);
        c = _mm_shuffle_epi8(c,ssmask1);
        b = _mm_shuffle_epi8(b,ssmask2);
        const __m128i cccc =_mm_blendv_epi8(c,_mm_blendv_epi8(b,a,bmask3),bmask4);

        __m128i a1 = _mm_unpackhi_epi8(aaaa,zero);
        __m128i a2 = _mm_unpacklo_epi8(aaaa,zero);
        a1 = _mm_mullo_epi16(a1,B);
        a2 = _mm_mullo_epi16(a2,B);
        __m128i b1 = _mm_unpackhi_epi8(bbbb,zero);
        __m128i b2 = _mm_unpacklo_epi8(bbbb,zero);
        b1 = _mm_mullo_epi16(b1,G);
        b2 = _mm_mullo_epi16(b2,G);

        __m128i c1 = _mm_unpackhi_epi8(cccc,zero);
        __m128i c2 = _mm_unpacklo_epi8(cccc,zero);
        c1 = _mm_mullo_epi16(c1,R);
        c2 = _mm_mullo_epi16(c2,R);

        a1 = _mm_add_epi16(a1,b1);
        a1 = _mm_add_epi16(a1,c1);
        a2 = _mm_add_epi16(a2,b2);
        a2 = _mm_add_epi16(a2,c2);

        a1 = _mm_srli_epi16(a1,8);
        a2 = _mm_srli_epi16(a2,8);

        a = _mm_packus_epi16(a1,a2);

        _mm_stream_si128((__m128i*)(d),a);
        d+=16;
    } 
}

5
我可以问一下为什么你不使用对应于“VLD3”指令的ARM NEON内置函数吗?这样可以省去所有的洗牌操作,使代码更简单快速。因为Intel SSE实现缺少2/3/4路交错加载指令,所以需要进行洗牌,但是当可用时,你不应该拒绝使用它们。 - Iwillnotexist Idonotexist
1
谢谢你告诉我这个。我之前没有想到这个解决方案,因为我还不完全理解NEON指令。 使用“VLD3”可以减小代码体积并加速代码。我会尝试一下的。 - S.Sato
1
如果您想了解更多信息,可以查看_ARM®架构参考手册,ARM®v7-A和ARM®v7-R版本_,第A8.6节_指令字母表_。请查看所有以V开头的指令。 - Iwillnotexist Idonotexist
@S.Sato - 我和你处于同样的位置...我们有SSE代码,现在正在将其转移到NEON。这个评论也引起了我的兴趣,因为我们已经将负载和洗牌操作移植到了NEON。这应该会有所帮助:针对NEON的编码-第1部分:加载和存储。另外请参考Stack Overflow上的NEON、SSE和交错加载与洗牌操作 - jww
1个回答

10

好的,下面是我刚写的那个函数的完全优化版本(请注意,如果大小小于32,则此函数只会返回)。

/*
 *  Created on: 2014. 7. 27.
 *      Author: Jake Lee
 *      Project FANIC - Fastest ARM NEON Implementaion Challenge
 */

// void fanicCvtBGR2GrayNEON(void *pDst, void *pSrc, unsigned int size);
// Y = 0.114*B + 0.587*G + 0.299*R
    .text
    .arm
    .global fanicCvtBGR2GrayNEON

    pDst    .req    r0
    pSrc    .req    r1
    size    .req    r2

    .align 5
    .func
fanicCvtBGR2GrayNEON:
    pld     [pSrc]
    subs    size, size, #32
    pld     [pSrc, #64]
    bxmi    lr
    pld     [pSrc, #64*2]
    vmov.i8     d0, #29
    vmov.i8     d1, #150
    vmov.i8     d2, #77

    .align 5
1:
    vld3.8      {d20, d21, d22}, [pSrc]!
    vld3.8      {d23, d24, d25}, [pSrc]!
    vld3.8      {d26, d27, d28}, [pSrc]!
    vld3.8      {d29, d30, d31}, [pSrc]!

    vmull.u8    q8, d20, d0
    vmlal.u8    q8, d21, d1
    vmlal.u8    q8, d22, d2
    vmull.u8    q9, d23, d0
    vmlal.u8    q9, d24, d1
    vmlal.u8    q9, d25, d2
    vmull.u8    q10, d26, d0
    vmlal.u8    q10, d27, d1
    vmlal.u8    q10, d28, d2
    vmull.u8    q11, d29, d0
    vmlal.u8    q11, d30, d1
    vmlal.u8    q11, d31, d2

    vrshrn.u16  d24, q8, #8
    vrshrn.u16  d25, q9, #8
    vrshrn.u16  d26, q10, #8
    vrshrn.u16  d27, q11, #8

    subs    size, size, #32
    pld     [pSrc, #64*3]
    pld     [pSrc, #64*4]

    vst1.8      {q12, q13}, [pDst]!
    bpl     1b

    cmp     size, #-32
    add     pSrc, pSrc, size
    bxle    lr
    add     pSrc, pSrc, size, lsl #1
    add     pDst, pDst, size
    b       1b

    .endfunc
    .end

正如您所看到的,尽管需要进行大量展开操作,但在汇编中编写NEON代码要比使用内在函数简单得多且更短。

玩得开心。


2
这太棒了。使用了我本来会用的东西 - VLD3 / VST1与后增量和融合乘积累加。唯一可以改进的方法可能是潜在的指令调度技巧。 - Iwillnotexist Idonotexist
2
@IwillnotexistIdonotexist:去除末尾的潜在互锁的唯一方法是将循环进一步展开到每次迭代64像素。然而,在循环内的指令数量将超过32,因此该循环将不再运行在核心的循环缓冲区中,可能导致性能下降。 - Jake 'Alquimista' LEE
2
我唯一想改变的是缓存预加载。在当前读取地址使用PLD不会得到任何东西。根据CPU的速度,它应该尝试预加载至少比当前读取位置多128个字节的数据。 - BitBank
@Jake'Alquimista'LEE - 你提供了一些很棒的NEON代码... 你是从哪里学到这些技能的? - jww
你有没有对内置的cvtColor进行基准测试?我很想知道可以期望什么样的加速。 - nbubis

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接