boost::variant如何允许字符串常量?

3

我一直在尝试使用类型列表,它们非常有趣。其中一件事是尝试通过实现自己的variant类来探究类型列表的工作原理及其用途。以下是我的代码示例:

#include <cstddef>
#include <typeinfo>

#ifndef VARIANT_H_
#define VARIANT_H_

struct NullType {};

template <class T, class U>
struct TypeList {
    typedef T Head;
    typedef U Tail;
};

#define TYPELIST_1(T1)                                 TypeList<T1, NullType> 
#define TYPELIST_2(T1, T2)                             TypeList<T1, TYPELIST_1(T2) > 
#define TYPELIST_3(T1, T2, T3)                         TypeList<T1, TYPELIST_2(T2, T3) > 
#define TYPELIST_4(T1, T2, T3, T4)                     TypeList<T1, TYPELIST_3(T2, T3, T4) > 
#define TYPELIST_5(T1, T2, T3, T4, T5)                 TypeList<T1, TYPELIST_4(T2, T3, T4, T5) > 
#define TYPELIST_6(T1, T2, T3, T4, T5, T6)             TypeList<T1, TYPELIST_5(T2, T3, T4, T5, T6) >
#define TYPELIST_7(T1, T2, T3, T4, T5, T6, T7)         TypeList<T1, TYPELIST_6(T2, T3, T4, T5, T6, T7) > 
#define TYPELIST_8(T1, T2, T3, T4, T5, T6, T7, T8)     TypeList<T1, TYPELIST_7(T2, T3, T4, T5, T6, T7, T8) > 
#define TYPELIST_9(T1, T2, T3, T4, T5, T6, T7, T8, T9) TypeList<T1, TYPELIST_8(T2, T3, T4, T5, T6, T7, T8, T9) >

namespace util {

    namespace {
        template <class TL>                 struct MaxSize;
        template <class TL>                 struct Length;
        template <class TL, class T>        struct IndexOf;
        template <class TL, unsigned int i> struct TypeAt;

        template <>
        struct MaxSize<NullType> {
            static const size_t value = 0;
        };

        template <class Head, class Tail>
        struct MaxSize<TypeList<Head, Tail> > {
            static const size_t value = (sizeof(Head) > MaxSize<Tail>::value) ? sizeof(Head) : MaxSize<Tail>::value;
        };

        template <>
        struct Length<NullType> {
            enum { value = 0 };
        };

        template <class Head, class Tail>
        struct Length<TypeList<Head, Tail> > {
            enum { value = 1 + Length<Tail>::value };
        };

        template <class T>
        struct IndexOf<NullType, T> {
            enum { value = -1 };
        };

        template <class Tail, class T>
        struct IndexOf<TypeList<T, Tail>, T> {
            enum { value = 0 };
        };

        template <class Head, class Tail, class T>
        struct IndexOf<TypeList<Head, Tail>, T> {
            enum { value = (IndexOf<Tail, T>::value == -1) ? -1 : 1 + IndexOf<Tail, T>::value };
        };

        template <class Head, class Tail>
        struct TypeAt<TypeList<Head, Tail>, 0> {
            typedef Head type;
        };

        template <class Head, class Tail, unsigned int i>
        struct TypeAt<TypeList<Head, Tail>, i> {
            typedef typename TypeAt<Tail, i - 1>::type type;
        };
    }

    template <class TL>
    class variant;

    template<class U, class TL> 
    U *get(variant<TL> *v);

    template<class U, class TL> 
    const U *get(const variant<TL> *v);

    template<class U, class TL> 
    U &get(variant<TL> &v);

    template<class U, class TL> 
    const U &get(const variant<TL> &v);

    // this stuff is a visitation pattern used to make sure
    // that contained objects get properly destroyed
    namespace {
        template <class TL>
        struct apply_visitor;

        struct destroy_visitor {
            template <class T>
            void operator()(T *p) {
                p->~T();
            }
        };

        template <class H, class T>
        struct visitor_impl {
            template <class U, class Pred>
            static void visit(U *p, Pred pred) {
                if(H *x = get<H>(p)) {
                    pred(x);
                } else {
                    apply_visitor<T>::visit(p, pred);
                }
            }
        };

        template <class H>
        struct visitor_impl<H, NullType> {
            template <class U, class Pred>
            static void visit(U *p, Pred pred) {
                if(H *x = get<H>(p)) {
                    pred(x);
                } else {
                    throw std::bad_cast();
                }
            }
        };

        template <class TL>
        struct apply_visitor {
            typedef typename TL::Head H;
            typedef typename TL::Tail T;

            template <class U, class Pred>
            static void visit(U *p, Pred pred) {
                visitor_impl<H, T>::visit(p, pred);
            }
        };
    }

    template <class TL>
    class variant {
        template<class U, class X> friend U *get(variant<X> *v);
        template<class U, class X> friend const U *get(const variant<X> *v);
        template<class U, class X> friend U &get(variant<X> &v);
        template<class U, class X> friend const U &get(const variant<X> &v);

    public :            
        variant() : type_index_(0){
            new (&storage_) typename TypeAt<TL, 0>::type();
        }

        ~variant() {
            apply_visitor<TL>::visit(this, destroy_visitor());
        }

        template <class T>
        variant(const T &x) : type_index_(IndexOf<TL, T>::value) {
            typedef typename TypeAt<TL, IndexOf<TL, T>::value>::type value_type;
            new (&storage_) value_type(x);
        }

        template <class T>
        variant(T &x) : type_index_(IndexOf<TL, T>::value) {
            typedef typename TypeAt<TL, IndexOf<TL, T>::value>::type value_type;
            new (&storage_) value_type(x);
        }

        template <class T>
        variant &operator=(const T &rhs) {
            variant(rhs).swap(*this);
            return *this;
        }

        variant &operator=(const variant &rhs) {
            variant(rhs).swap(*this);
            return *this;
        }

    public:
        void swap(variant &other) {
            using std::swap;
            swap(storage_, other.storage_);
            swap(type_index_, other.type_index_);
        }

    private:
        template <class T>
        const T &get_ref() const {
            typedef typename TypeAt<TL, IndexOf<TL, T>::value>::type value_type;

            if(IndexOf<TL, T>::value != type_index_) {
                throw std::bad_cast();
            }

            return *reinterpret_cast<const value_type *>(&storage_);
        }

        template <class T>
        T &get_ref() {
            typedef typename TypeAt<TL, IndexOf<TL, T>::value>::type value_type;

            if(IndexOf<TL, T>::value != type_index_) {
                throw std::bad_cast();
            }

            return *reinterpret_cast<value_type *>(&storage_);
        }

        template <class T>
        const T *get_ptr() const {
            typedef typename TypeAt<TL, IndexOf<TL, T>::value>::type value_type;

            if(IndexOf<TL, T>::value != type_index_) {
                return 0;
            }

            return reinterpret_cast<const value_type *>(&storage_);
        }

        template <class T>
        T *get_ptr() {
            typedef typename TypeAt<TL, IndexOf<TL, T>::value>::type value_type;

            if(IndexOf<TL, T>::value != type_index_) {
                return 0;
            }

            return reinterpret_cast<value_type *>(&storage_);
        }

    public:
        int which() const {
            return type_index_;
        }

        bool empty() const {
            return false;
        }

        const std::type_info &type() const;

    private:
        struct { unsigned char buffer_[MaxSize<TL>::value]; } storage_;
        int                                                   type_index_;
    };

    // accessors
    template<class U, class TL> 
    U *get(variant<TL> *v) {
        return v->template get_ptr<U>();
    }

    template<class U, class TL> 
    const U *get(const variant<TL> *v) {
        return v->template get_ptr<U>();
    }

    template<class U, class TL> 
    U &get(variant<TL> &v) {
        return v.template get_ref<U>();
    }

    template<class U, class TL> 
    const U &get(const variant<TL> &v) {
        return v.template get_ref<U>();
    }
}

#endif

这非常好用!我可以写以下内容,并且它能很好地工作:

typedef util::variant<TYPELIST_3(std::string, int, double)> variant;
variant x = std::string("hello world");
variant y = 10;
variant z = 123.45;

std::cout << util::get<std::string>(x) << std::endl;
std::cout << util::get<int>(y) << std::endl;
std::cout << util::get<double>(z) << std::endl;

一切都按照预期工作 :-). 我的问题是:使用boost::variant,我可以毫不费力地编写以下内容:

boost::variant<int, std::string> v = "hello world";

使用我的版本,如果我写成这样:

util::variant<TYPELIST_2(int, std::string)> v = "hello world";

我收到了这样的错误信息:

我得到了这样的错误信息:

variant.hpp: In instantiation of 'util::<unnamed>::TypeAt<TypeList<std::basic_string<char>, NullType>, 4294967294u>':
variant.hpp:76:47:   instantiated from 'util::<unnamed>::TypeAt<TypeList<int, TypeList<std::basic_string<char>, NullType> >, 4294967295u>'
variant.hpp:161:61:   instantiated from 'util::variant<TL>::variant(const T&) [with T = char [12], TL = TypeList<int, TypeList<std::basic_string<char>, NullType> >]'
test.cc:27:50:   instantiated from here
variant.hpp:76:47: error: invalid use of incomplete type 'struct util::<unnamed>::TypeAt<NullType, 4294967293u>'
variant.hpp:32:46: error: declaration of 'struct util::<unnamed>::TypeAt<NullType, 4294967293u>'

基本上,variant在类型列表中找不到char[12]。这是有道理的,因为char[12]实际上并没有明确列为其中一种类型...
boost::variant如何使这个过程如此无缝?我觉得这是我理解boost::variant工作原理中唯一缺失的部分。你有什么想法吗?

1
顺便问一下,为什么析构函数是virtual的? - Xeo
1
在你的类的每个实例中,出于习惯而不必要地增加 sizeof(void*) 的成本,会给阅读你代码的人带来额外的困惑。 - Andreas Magnusson
Variant非常有趣!在研究variant/variant.hpp时,我发现模板构造函数调用了convert_construct(),其类型合法版本在内部存储地址上应用了convert_copy_into访问者。 - chrisaycock
1
@Andreas Magnusson:删除了 virtual,因为它实际上没有任何作用。 - Evan Teran
2个回答

3
您不希望使用另一个答案所建议的is_convertible函数。这样,您基本上将使用C ++类型特征重新实现C ++转换机制。相反,您可以使用已经拥有的C ++基础设施。
boost的做法是通过具有接受variant可能的每种类型的函数的类来实现的。我不确定boost在C ++ 03中如何实现,但在C ++ 11语法中:
template <typename First, typename... Rest>
class constructor : public constructor<Rest...>
{
  using constructor<Rest...>::construct;

  static void
  construct(variant& v, First&& value);
};

然后你的operator=和其他函数调用`constructor<Types...>::construct(*this, value)`,如果有明确的转换,C++会自动找到它。我写了一篇非常详细的博客文章,分析了所有这些是如何工作的:http://thenewcpp.wordpress.com/2012/02/15/variadic-templates-part-3-or-how-i-wrote-a-variant-class/

2
你可以使用类型特征,如is_convertible(或C++11 stdlib版本)。
正如@Andreas的评论所说,你需要稍微修改你的模板构造函数/赋值运算符,不要搜索特定类型,而是搜索第一个匹配项。
#include <boost/mpl/if.hpp>
#include <boost/type_traits/is_convertible.hpp>

template<class T, class TList>
struct FirstMatch;

template<class T, class Head, class Tail>
struct FirstMatch<T, TypeList<Head, Tail>>{
  static bool const is_conv = boost::is_convertible<T, Head>::value;
  typedef typename boost::mpl::if_c<is_conv, Head,
      typename FirstMatch<T, Tail>::type>::type type;
};

template<class T>
struct FirstMatch<T, NullType>{
  typedef struct ERROR_no_convertible_type_found type;
};

template<class T, class TList>
struct FirstOrExactMatch{
  static int const idx = IndexOf<TList, T>::value;
  typedef typename boost::mpl::if_c<idx != -1,
      TypeAt<TList, idx>,
      FirstMatch<T, TList>
      >::type::type type;
};

代码未经测试,但应该可以正常工作(除了拼写错误)。

有关如何实际应用它的任何想法吗?虽然这些类型确实需要可转换,但我不确定在代码中应该放在哪里。 - Evan Teran
1
我可能会选择一个 IndexOfBestMatch 元函数,当你的 ctor/operator= 中的 IndexOf 失败时调用它。不确定 boost::variant 是如何实现的,但这意味着对你现有代码的更改最小。 - Andreas Magnusson
@AndreasMagnusson:有趣,我得研究一下。我很想看到一个更详细的答案,这样我就可以接受它了;)。 - Evan Teran
@Xeo:我仍然会首先寻找精确匹配,只有在找不到时才寻找可转换的匹配。考虑这种情况:variant<TYPELIST_2(double, int)> v = 1; - Andreas Magnusson
@EvanTeran:收到提示了:),但Xeo为此付出了很多努力,而且我太累了,写元代码也不行... - Andreas Magnusson
现在完成了,这只是FirstMatchIndexOf/ TypeAt之间的粘合代码。 这会遍历类型列表三次,但如果需要,我愿意改进它。 - Xeo

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,
原文链接