我该如何处理大矩阵?

5
我正在使用监督学习进行主题检测。然而,我的矩阵非常庞大(202180 x 15000),我无法将它们适配到我想要的模型中。大部分矩阵由零组成。只有逻辑回归可以工作。是否有一种方法可以继续使用相同的矩阵,但使它们能够与我想要的模型一起工作?例如,我可以以不同的方式创建我的矩阵吗? 这是我的代码:
import numpy as np
import subprocess
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import LogisticRegression

from sklearn import metrics

def run(command):
    output = subprocess.check_output(command, shell=True)
    return output

加载词汇

 f = open('/Users/win/Documents/wholedata/RightVo.txt','r')
    vocab_temp = f.read().split()
    f.close()
    col = len(vocab_temp)
    print("Training column size:")
    print(col)

创建训练矩阵

row = run('cat '+'/Users/win/Documents/wholedata/X_tr.txt'+" | wc -l").split()[0]
print("Training row size:")
print(row)
matrix_tmp = np.zeros((int(row),col), dtype=np.int64)
print("Train Matrix size:")
print(matrix_tmp.size)

label_tmp = np.zeros((int(row)), dtype=np.int64)
f = open('/Users/win/Documents/wholedata/X_tr.txt','r')
count = 0
for line in f:
    line_tmp = line.split()
    #print(line_tmp)
    for word in line_tmp[0:]:
        if word not in vocab_temp:
            continue
        matrix_tmp[count][vocab_temp.index(word)] = 1
    count = count + 1
f.close()
print("Train matrix is:\n ")
print(matrix_tmp)
print(label_tmp)
print("Train Label size:")
print(len(label_tmp))

f = open('/Users/win/Documents/wholedata/RightVo.txt','r')
vocab_tmp = f.read().split()
f.close()
col = len(vocab_tmp)
print("Test column size:")
print(col)

制作测试矩阵

row = run('cat '+'/Users/win/Documents/wholedata/X_te.txt'+" | wc -l").split()[0]
print("Test row size:")
print(row)
matrix_tmp_test = np.zeros((int(row),col), dtype=np.int64)
print("Test matrix size:")
print(matrix_tmp_test.size)

label_tmp_test = np.zeros((int(row)), dtype=np.int64)

f = open('/Users/win/Documents/wholedata/X_te.txt','r')
count = 0
for line in f:
    line_tmp = line.split()
    #print(line_tmp)
    for word in line_tmp[0:]:
        if word not in vocab_tmp:
            continue
        matrix_tmp_test[count][vocab_tmp.index(word)] = 1
    count = count + 1
f.close()
print("Test Matrix is: \n")
print(matrix_tmp_test)
print(label_tmp_test)

print("Test Label Size:")
print(len(label_tmp_test))

xtrain=[]
with open("/Users/win/Documents/wholedata/Y_te.txt") as filer:
    for line in filer:
        xtrain.append(line.strip().split())
xtrain= np.ravel(xtrain)
label_tmp_test=xtrain

ytrain=[]
with open("/Users/win/Documents/wholedata/Y_tr.txt") as filer:
    for line in filer:
        ytrain.append(line.strip().split())
ytrain = np.ravel(ytrain)
label_tmp=ytrain

加载监督模型

model = LogisticRegression()
model = model.fit(matrix_tmp, label_tmp)
#print(model)
print("Entered 1")
y_train_pred = model.predict(matrix_tmp_test)
print("Entered 2")
print(metrics.accuracy_score(label_tmp_test, y_train_pred))
1个回答

5
您可以使用scipy软件包中提供的一种特定数据结构,称为稀疏矩阵:http://docs.scipy.org/doc/scipy/reference/sparse.html 根据定义: 稀疏矩阵只是一个具有大量零值的矩阵。相比之下,许多或大多数条目都非零的矩阵被称为密集矩阵。对于什么构成稀疏矩阵没有严格的规定,因此我们将说矩阵是稀疏的,如果利用其稀疏性会有一些好处。此外,还有各种稀疏矩阵格式,旨在利用不同的稀疏模式(稀疏矩阵中非零值的结构)和不同的访问和操作矩阵条目的方法。

网页内容由stack overflow 提供, 点击上面的
可以查看英文原文,